LITTLE THINGS AIPS Reduction of DDO 75, B config.: VLA Obs. of 21 Nov 2007, AO215_Q ===================================================================== calibration recipe v. 2.0: mrupen 10oct08 calibration recipe v. 2.1: mrupen 13oct08 calibration recipe v. 2.1.update: Dana Ficut Vicas 29 Oct 08 (new adverbs in Aips) calibration recipe v. 2.2: Dana Ficut Vicas 11Dec 08(tiny bits) calibration recipe v. 2.3: Dana Ficut Vicas 11 Feb 09(UVCOP ambiguities) calibration recipe v. 2.4: Dana Ficut Vicas 3 Mar 09(team raised issues) calibration recipe v. 2.5: Dana Ficut Vicas 23 September 2009 (no smoothing with WIPER on the source data) DAH: Add naming convention 141010 Latest update: 3rd March 2009 Data reduced by Deidre Hunter, Lowell Observatory 1 Aug 2011--- 0. Basic stuff B configuration, partial EVLA From observing log (available online at http://www.vla.nrao.edu/cgi-bin/oplogs.cgi): * Wind/API rms phase/clouds: 1.8 to 5.5 m/s 3.2 to 14.3 10% stratiform clouds * ant. 1 stolen for EVLA tests * ant. moved recently: 1-5, 7, 11-27 (Must have just moved into B array). Antenna 8 had front end problems and a new one was switched in. Antenna 13 lost data because someone was working on "P band". Antenna 27 lost data because of "F3 lock issue". 1. FILLM executed on 1Aug11 a. Request archive data: copy public project data : AO215 2007-11/vla2007-11-21.dat to AO215_1 b. FILLM -> D75-B2.CH 0.1, D75-B2.LINE.1 The organization of this file is thus: 0137+331 1024-008 SEXA etc 1024-008 1331+305 The file is only Sextans A related, so don't need a timerang here. default FILLM datain '/ta/d75b2/AO215_ band 'l';vlaobs ''; doall -1 ; qual -1 $ restricts FILLM to the galaxy+calibrators of interest nfiles 0; ncount 1 $ read one filetget fillm, outna 'd75-b2' outdisk 1; outseq 0 douvcomp= -1 $ allow channel/IF-dependent weights doweight 10 $ use memo 108 weights (i.e., put weights in 1/Jy^2) bparm= -1,-1 $ avoid opacity & gain corrections cparm 0 cparm(4)=25.1 $ one needs to explicitly flag shadowed antennas $ since the ModComps were retired on 27 June 2007 $ this requires FILLM in 31DEC08 after 18Nov08 MNJ cparm(7)= 0 $ assigns new FREQID if frequency changes by more than $ the max. Doppler shift between sources 180 degrees $ apart. Setting this to -1 forces all data to have same $ FREQID. doconcat=-1; $ Change this to DOCONCAT=1 to add data to an existing file =====> AIPS 1: 93 2 D75-B2 .CH 0 . 1 UV 01-AUG-2011 09:44:15 AIPS 1: 94 2 D75-B2 .LINE . 1 UV 01-AUG-2011 09:44:15 ***N.B. FILLM's channel 0 will ONLY be used for initial flagging. We're quite paranoid here. 2. TASAV -> LINSAV.1 executed on 1Aug11 ***We TASAV right away, because VLANT changes the AN table. Did I mention we're paranoid? default TASAV outna 'D75-b2BeTa outcla 'LINSAV' getn *.LINE >getn 94 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINE.1 =====> AIPS 1: 95 2 D75-b2BeTa .LINSAV. 1 UV 01-AUG-2011 09:45:48 3. UVCOP -> LINCOP.1 executed on 1Aug11 ***Discard the first and last channels: 1st and last 10 channels if 127 channels total 1st and last 20 channels if 255 channels total ***We discard these Evil Channels because (1) they're pretty much useless; (2) they seem to confuse BPASS (which takes the solution from channel N as the initial guess for channel N+1); (3) their noise characteristics are quite different from the rest of the channels, which can be confusing e.g. in clipping and imaging. default UVCOP outcla 'LINCOP' bchan 21; echan 255-20 $ Use bchan 21 ; echan 255-20 if 255 channels total uvcopprm 0 uvcopprm(4) 1 $ report progress getn *.LINE >getn 94 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINE.1 =====> AIPS 1: 96 2 D75-B2 .LINCOP. 1 UV 01-AUG-2011 09:46:46 ***From now on we operate on LINCOP data unless otherwise specified. 4. LISTR/SCAN --> D75-B2.listr ***We do this before VLANT because we need to know FREQIDs for VLANT default LISTR optype 'SCAN' docrt -1 outpr '/ta/d75b2/d75-b2.listr getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> d75-b2.listr localhos LISTR(31DEC08) 2 01-AUG-2011 09:48:44 Page 1 File = D75-B2 .LINCOP. 1 Vol = 1 Userid = 2 Freq = 1.418981000 GHz Ncor = 2 No. vis = 1001791 Scan summary listing Scan Source Qual Calcode Sub Timerange FrqID START VIS END VIS 1 0137+331 : 0000 B 1 0/09:13:35 - 0/09:30:35 1 1 32806 2 1024-008 : 0000 B 1 0/09:34:45 - 0/09:37:25 1 32807 37325 3 SEXA : 0000 1 0/09:37:45 - 0/10:19:45 1 37326 119228 4 1024-008 : 0000 B 1 0/10:20:05 - 0/10:22:15 1 119229 123474 5 SEXA : 0000 1 0/10:22:35 - 0/11:05:35 1 123475 207330 6 1024-008 : 0000 B 1 0/11:05:55 - 0/11:08:05 1 207331 211576 7 SEXA : 0000 1 0/11:08:25 - 0/11:51:25 1 211577 295407 8 1024-008 : 0000 B 1 0/11:51:45 - 0/11:53:55 1 295408 299635 9 SEXA : 0000 1 0/11:54:15 - 0/12:37:15 1 299636 383486 10 1024-008 : 0000 B 1 0/12:37:35 - 0/12:39:45 1 383487 387721 11 SEXA : 0000 1 0/12:40:05 - 0/13:23:15 1 387722 470281 12 1024-008 : 0000 B 1 0/13:23:35 - 0/13:25:45 1 470282 474516 13 SEXA : 0000 1 0/13:26:05 - 0/14:09:05 1 474517 558372 14 1024-008 : 0000 B 1 0/14:09:35 - 0/14:11:35 1 558373 562597 15 SEXA : 0000 1 0/14:12:05 - 0/14:55:05 1 562598 646772 16 1024-008 : 0000 B 1 0/14:55:35 - 0/14:57:45 1 646773 651322 17 SEXA : 0000 1 0/14:58:15 - 0/15:41:05 1 651323 735172 18 1024-008 : 0000 B 1 0/15:41:35 - 0/15:43:45 1 735173 739722 19 SEXA : 0000 1 0/15:44:15 - 0/16:27:15 1 739723 823347 20 1024-008 : 0000 B 1 0/16:27:45 - 0/16:29:45 1 823348 827572 21 SEXA : 0000 1 0/16:30:15 - 0/17:12:15 1 827573 906599 22 1024-008 : 0000 B 1 0/17:12:45 - 0/17:14:45 1 906600 910554 23 SEXA : 0000 1 0/17:15:25 - 0/17:57:15 1 910555 985650 24 1024-008 : 0000 B 1 0/17:57:45 - 0/17:59:55 1 985651 989850 25 1331+305 : 0000 A 1 0/18:02:35 - 0/18:09:35 1 989851 1001791 localhos LISTR(31DEC08) 2 01-AUG-2011 09:48:44 Page 2 File = D75-B2 .LINCOP. 1 Vol = 1 Userid = 2 Source summary Velocity type = ' ' Definition = ' ' ID Source Qual Calcode RA(2000.0) Dec(2000.0) IFlux QFlux UFlux VFlux No. vis 1 0137+331 : 0000 B 01:37:41.2994 33:09:35.132 0.000 0.000 0.000 0.000 32806 2 1024-008 : 0000 B 10:24:29.5866 -00:52:55.497 0.000 0.000 0.000 0.000 51414 3 SEXA : 0000 10:11:00.8000 -04:41:34.000 0.000 0.000 0.000 0.000 905630 4 1331+305 : 0000 A 13:31:08.2879 30:30:32.958 0.000 0.000 0.000 0.000 11941 ID Source Freq(GHz) Velocity(Km/s) Rest freq (GHz) 1 All Sources 1.4190 0.0000 0.0000 Frequency Table summary FQID IF# Freq(GHz) BW(kHz) Ch.Sep(kHz) Sideband 1 1 1.41898100 1312.2560 6.1035 1 5. VLANT -> AN/1, CL/2 executed on 1Aug11 ***Note that VLANT can be run only for data observed from 1992 onwards. Data earlier than 1991 produce the following error message: VLANT1: Task VLANT (release of 31DEC07) begins VLANT1: ANT DATA UNAVAILABLE FOR YEAR 1991 DATA START WITH 1992 VLANT1: Purports to die of UNNATURAL causes For earlier data we skip baseline corrections entirely, and hope for the best. If there are clear and systematic phase gradients with time, consult the baseline corrections at http://www.vla.nrao.edu/astro/archive/baselines/ and apply corrections via CLCOR (which is basically what VLANT does). ***10oct08: Currently VLANT works on only one FREQID at a time. We therefore have to run VLANT multiple times for data with multiple FREQIDs. Unfortunately VLANT (1) produces a new CL table every time, and (2) updates the AN table positions every time as well. : CL tables: I'd like to maintain the convention that CL/1 is the original CL table and CL/2 has all the corrections that should have been applied on-line but weren't -- mainly, antenna position corrections. For multiple FREQIDs therefore this recipe calls for deleting the intermediate CL tables created by VLANT, using the rather clumsy mechanism of TASAVing to a temporary file, deleting the original CL tables, and copying the latest one back from the TASAV'd data set. Blah. : AN table: For now, this recipe resets to the original AN table just before running VLANT the last time. This means that only one run of VLANT updates the AN entries, leading to a correct AN table as needed for (e.g.) UVFIX. I've e-mailed DAIP to see about fixing all this, by allowing FREQID= -1 to mean "calculate corrections for all FREQIDs" (currently FREQID= -1 is reset to FREQID= 1). We'll see what Eric says. #####VLANT no longer has freqid as a parameter. 5a. default VLANT getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 localh> VLANT1: Copied CL file from vol/cno/vers 1 96 1 to 1 96 2 localh> VLANT1: CL version input 1 output 2 localh> VLANT1: VLANT STNID(10) = 'E8 ' localh> VLANT1: VLANT XCOR(10) = -0.0006 localh> VLANT1: VLANT YCOR(10) = 0.0014 localh> VLANT1: VLANT ZCOR(10) = -0.0003 localh> VLANT1: VLANT STNID(13) = 'N16' localh> VLANT1: VLANT XCOR(13) = 0.0042 localh> VLANT1: VLANT YCOR(13) = -0.0005 localh> VLANT1: VLANT ZCOR(13) = 0.0020 6. PRTAN AN/1 default PRTAN docrt 132 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 Location Of VLA Antennas N36 ( 7) N32 (26)* N28 (27) N24 (25)* N20 ( 2) N16 (13)* N12 (18)* N8 ( 9) N4 (12) *(19) W4 E4 (15) ( 6) W8 E8 (10) *(24) W12 E12 (20) ( 8) W16 E16 (14)* ( 5) W20 E20 (21)* *(16) W24 E24 (28) *(17) W28 E28 ( 3) ( ) E32 (11)* (22) W36 E36 (23)* VLA:_OUT ( 1) VLA:_OUT ( 4) VPT:_OUT (29) * => EVLA ANTENNA ***To choose the reference antenna the following algorithm should be followed: 1. should be present throughout the run 2. should be on an "inner" pad, but NOT N1/E1/W1 (to avoid shadowing) 3. NOT on the master pad (since those are always weird) 4. NOT an EVLA antenna (since those are often weird) 5. try to avoid the north arm in the smaller configurations (to avoid shadowing) 6. NOT listed in any interesting way in the log file (to avoid problems with the reference antenna) 7. preferably consistent with other recent runs 8. should be a fairly stable antenna (can't tell until TVFLG/CALIB of course...) ===> Refant: E4 (15) 7. Calibrators ***Check out the calibrators in the on-line calibrator manual: http://www.vla.nrao.edu/astro/calib/manual/index.shtml ***Max baseline at 21 cm in B array is 54.3 klambda C array is 16.2 klambda D array is 4.9 klambda primary (flux/bandpass) calibrators: 1331+305 J2000 A 13h31m08.287984s 30d30'32.958850" Aug01 3C286 1328+307 B1950 A 13h28m49.657700s 30d45'58.640000" ----------------------------------------------------- BAND A B C D FLUX(Jy) UVMIN(kL) UVMAX(kL) ===================================================== 20cm L S S P P 15.00 0137+331 J2000 B 01h37m41.299431s 33d09'35.132990" Aug01 3C48 0134+329 B1950 B 01h34m49.826400s 32d54'20.259000" ----------------------------------------------------- BAND A B C D FLUX(Jy) UVMIN(kL) UVMAX(kL) ===================================================== 20cm L X P P P 16.50 40 secondary (gain) calibrator: 1024-008 J2000 B 10h24m29.586611s -00d52'55.497850" Aug01 1021-006 B1950 B 10h21m56.195500s -00d37'41.434000" ----------------------------------------------------- BAND A B C D FLUX(Jy) UVMIN(kL) UVMAX(kL) ===================================================== 20cm L P S S X 1.00 4.5 ===> secondary cal --- Is an S calibrator for B array. Has minimum of 4.5 kl. 7b. SETJY -> SU/1 executed on 1Aug11 ***Set aparm(2) to corespond to date of observation. If date <1990 aparm(2)=3 If 19921998 aparm(2)=0 ***We need to enter a flux density for each primary (flux) calibrator. If we have only one FREQID, this is easy: default SETJY sources '1331+305','' $ primary (flux) calibrator(s) optype 'CALC'; freqid=1 $ First FREQID aparm 0,0 $ data taken after 1998 getn *.LINCOP; >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> localh> SETJY1: / Flux calculated using known spectrum localh> SETJY1: BIF = 1 EIF = 1 /Range of IFs localh> SETJY1: '1331+305 ' IF = 1 FLUX =14.7332 (Jy calcd) localh> SETJY1: / Using (1999.2) VLA or Reynolds (1934-638) coefficients default SETJY sources '0137+331','' $ primary (flux) calibrator(s) optype 'CALC'; freqid=1 $ First FREQID aparm 0,0 $ data taken after 1998 getn *.LINCOP; >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> localh> SETJY1: / Flux calculated using known spectrum localh> SETJY1: BIF = 1 EIF = 1 /Range of IFs localh> SETJY1: '0137+331 ' IF = 1 FLUX =15.8897 (Jy calcd) localh> SETJY1: / Using (1999.2) VLA or Reynolds (1934-638) coefficients 7c. CALRD executed on 1Aug11 ***Read in models of flux density calibrators: default CALRD object '3c286';band 'L'; localh> CALRD1: Reading disk file AIPSTARS:3C286_L.MODEL localh> CALRD1: Create 3C286_L .MODEL . 1 (MA) on disk 1 cno 69 =====> AIPS 1: 69 2 3C286_L .MODEL . 1 MA 29-JUL-2011 22:50:06 default CALRD object '3c48';band 'L'; localh> CALRD1: Reading disk file AIPSTARS:3C48_L.MODEL localh> CALRD1: Create 3C48_L .MODEL . 1 (MA) on disk 1 cno 91 =====> AIPS 1: 91 2 3C48_L .MODEL . 1 MA 31-JUL-2011 23:19:36 ***Note: These models are in J2000 coordinates. If your data are in B1950, change the model images to B1950 with EPOSWTCH. We will later use UVFIX to fix the uv-data. 8. PRTUV (used to find integration times on calibrators & sources) default PRTUV cparm 0; cparm(9)=203 $ Pick a baseline -- here, baseline 2-3 docrt 132 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 ====> calib: 10s source: 10s 9. UVFLG -> FG/1 executed on 1Aug11 ***We toss the EVLA-EVLA baselines, to avoid dealing with aliasing. There should still be plenty of VLA-EVLA baselines to allow antenna-based solutions for the EVLA...but keep an eye out for oddities (e.g., in BPASS)! default UVFLG outfgver 1;opcode 'flag';reason 'EVLA' getn *.CH0 $ Note that we use FILLM's CH0 for initial flags -- we'll $ TACOP later. >getn 93 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.CH 0.1 antenna=EVLA;baseline=EVLA; =====> localh> UVFLG1: Wrote 78 flags to flag table version 1 10. TVFLG -> FG/1 executed on 1Aug11 ***Again, we *only* use the original CH 0 from FILLM for initial flagging. Here we flag calibrators only, to remove any gross, obvious problems. - Check the first scan carefully -- often the system isn't "organized" on this first scan - On-line flagging isn't as reliable as in the old days, so there are plenty of hot pixels and hiccups. - We are NOT quacking, because (1) FILLM's NX table isn't correct; (2) QUACK flags data from the beginning-of-scan, whereas we want to flag data from antennas-on-source. default TVFLG calcode '*' $ calibrators only docat -1 $ avoid saving temporary files dohist -1 $ avoid creation of history entries Freqid 1 $ must step through all FREQIDs! docalib -1 flagver 1;outfgver 1 $ keep all flags in FG/1 dparm 0 dparm(3) 1 $ show baselines twice, to treat all antennas identically -- $ this displays baseline 27-1 as well as 1-27 dparm(6)=10 $ time resolution: should be set to the calibrators' integration $ time, in seconds getn *.CH0 $ note this is the ONLY time we use FILLM's Channel 0! >getn 93 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.CH 0.1 ***Within TVFLG: - Set useful defaults: SMOOTH=1 to avoid averaging date before displays SCAN= 20 to use a long time for median filters (AMP/PH DIFF) FLAG ALL CHANNELS FLAG STOKES FULL (usually -- sometimes you'll want NORR or NOLL) ***If individual Stokes need to be flagged, make sure you set the STOKES FLAG to correspond to the polarization that is displayed on the TV SWITCH SOURCE FLAG to ONE-SOURCE to avoid inadvertantly flagging your galaxy (though sometimes you'll want to of course) - Be sure to inspect BOTH polarizations! ***We suggest the following steps: - Set the above defaults - Flag first integration in every scan (manual QUACK) -- this should be the first integration AFTER most antennas are on-source, which is why we can't use the usual QUACK. - Inspect the following: AMPLITUDE to check for missing records or antennas AMP DIFF to check for variable gains PHS DIFF to check for variable atmosphere/gains - If your data set is in D array(if your source is southern than also check for this problem in the C array) than keep an open eye for solar interference. It will be obvious if in TVFLG you choose a SORT BY BASELINE display, showing you how the short baselines behave,the ones affected by solar interference.If solar interference is affecting your data than in CALIB you should use a UVRANGE. ***Note: occasionally, flagging using UVFLG can be more straightforward (e.g., deleting an antenna). =====> Flag beginnings of each scan. 0137+331: Flag some segments and one big time sequence on basis of phase diff. ***** Realized some way down that I need to flag all of 0137+331 before that phase jump region. Saw this on another galaxy. ***** Antenna 2 is high in amp. 1331+305: Antenna 2 is high in amp. Antenna 27 is high in phase diff. Flag throughout scan. 1024-008: Ant 8 and 27 had segments of very low values. Flagged. Some high pha diff, clip interactively. Antenna 2 is not high. ----> Flag antenna 2 throughout. default UVFLG antenna 2,0 $ the antenna which "jumped" timer 0; $ the source scan between the offending ph.cal scans opcode 'FLAG' reason 'high amp' outfgver 1 >getn 93 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.CH 0.1 =====> localh> UVFLG1: Wrote 1 flags to flag table version 1 10b. TABED FG/1 executed on 1Aug11 ***Here we TABED the CH 0 flags to LINCOP (with FREQID= -1). After this we're done with FILLM's channel 0. default TABED opty 'repl' inext 'fg' inver 1 ; outver 1; bcount 1;ecount 0 ; aparm 0 aparm(1) 3 $ Changing column 3 = FREQID keyval= -1,0 $ ...to FREQID= -1 getn *.CH 0 getona *.LINCOP >getn 93 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.CH 0.1 >getona 96 AIPS 1: Got(O) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> LINCOP FG/1 11. BPASS ***This is a first-order BPASS leading to a new Channel 0. The goal is to avoid closure errors in Channel 0 calibration due to huge delays (phase slopes) on VLA-EVLA baselines. We divide each visibility by the vector average of the inner 3/4 of the band (i.e., an on-the-fly channel 0). Thus we remove source structure (tho' getting the weights wrong) and take care of the amplitude scale. ***There is a split here between the easy case (one FREQID for all sources) and the Galactic HI case (multiple FREQIDs, usually different for the bandpass calibrator and the galaxy (and phase calibrator)). Check LISTR/SCAN to see which you're doing. 11a. BPASS: one FREQID for all sources -> BP/1 executed on 1Aug11 default BPASS calsour '1331+305','0137+331','' $ Select bandpass calibrators docal 1 ; gainuse 2 $ apply VLANT changes. Probably irrelevant. flagver 1 $ apply initial flags refant 15 $ Change this to your refant Qual -1 solint 0 $ one solution per scan minamper 7 ; minphser 7 $ report closures > 7%/7d smooth 0 $ no smoothing soltype '' ; weightit 0 $ L1, L1R, etc. seem _less_ stable -- weird bpassprm 0 bpassprm(5) 0 $ derive "channel 0" on a record-by-record basis -- $ more biased than averaging first, but avoids $ some subtle pitfalls (see EXPLAIN file) bpassprm(2) 1 $ some closure info is printed bpassprm(6) 2 $ print avg. closure errors > 2% bpassprm(7) 2 $ print avg. closure errors > 2d ichansel 0 $ derive channel 0 from inner 3/4 of the band freqid 1 $ here we have only one FREQID getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> BP/1 11c. POSSM to check BP table 11c1. Plot BP table itself default POSSM $ to check BPASS results flagver 1 aparm 0, 1, 0.7, 1.3, -180, 180, 0, 2, 0, 0 $ Plot BP, with amp/ph ranges source '1331+305','0137+331','1024-008','' $ POSSM doesn't work with $ source '' for some reason! solint -1 $ Separate plots for each scan nplots 9 $ 9 plots per page bparm 0 dotv 1 freqid 1; bpver 1 $ for single-FREQID data sets tvinit getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> bpass_table_1.jpg, bpass_table_2.jpg, bpass_table_3.jpg, bpass_table_4.jpg, bpass_table_5.jpg, bpass_table_6.jpg Antenna 5 looks a little funny---RR has different slope, but wiper of data looks fine. 11c2. Apply BP table to 2ndary calibrator & plot individual baselines default POSSM flagver 1 aparm 0 $ Plot data solint -1 $ Separate plots for each scan nplots 9 $ 9 plots per page aparm 0 aparm(1) 1 $ vector average source='1024-008','' $ Secondary (phase) calibrator docal 1 ; gainuse 2 ; doband 1 $ average all BP entries dotv 1 tvinit freqid 1; bpver 1 $ for single-FREQID data sets getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> Look OK. 11c3. Apply BP table to 2ndary calibrator & vector average all data default POSSM flagver 1 aparm 0 $ Plot data solint 0 $ average all time nplots 0 $ average all baselines aparm 0 aparm(1) 1 $ vector average source='1024-008','' $ Secondary (phase) calibrator docal 1 ; gainuse 2 ; doband 1 $ average all BP entries dotv 1 tvinit freqid 1; bpver 1 $ for single-FREQID data sets getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> bpass_2cal_vectorave_rr.jpg, bpass_2cal_vectorave_ll.jpg Looks good. ***This plot should be flat in both amp. and phase as a function of frequency, with no slope.. If some channels are off, note which ones those are and keep an eye out for interference or other bad data. If there are large errors consider running BPASS on the secondary calibrator and using that to correct the galaxy. Note that this will be somewhat painful since AIPS does not allow incremental BP tables -- unlike SN or CL tables. Sigh. 12. AVSPC -> NEWCH0.1 (2,3) executed on 1Aug11 ***AVSPC must be run once for each FREQID (unfortunately FREQID=-1 purports to work, but creates an empty data set). This entails some nasty bookkeeping for data sets with multiple FREQIDs. Here I assume we have one or three FREQIDs. If BPASS checks above show that one FREQID is useless, you should ignore that one entirely in this and all subsequent processing. ***We will use these NEWCH0 files for (1) further flagging, and (2) time-dependent gain calibration. 12a. FREQID=1 --> NEWCH0.1 default AVSPC docalib -1;gainuse 0; flagver -1 $ do NOT apply flags doband 1 freqid 1; bpver 1 $ for single-FREQID data sets getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 outname inna ; outcl 'NEWCH0' =====> AIPS 1: 97 2 D75-B2 .NEWCH0. 1 UV 01-AUG-2011 14:20:04 12d. LISTR/SCAN ***It is a VERY good idea to run LISTR/SCAN on each of the NEWCH0 data sets at this point, to be sure each has the data you expect. =====> Looks same. 13. TABED LINCOP FG/1 -> NEWCH0 FG/1 ***We use TABED to set FREQID to -1 (apply to all FREQIDs) in the FG table, since AVSPC will change all FREQIDs to 1 in the NEWCH0 data sets. 13a. NEWCH0.1 default TABED opty 'repl' inext 'fg' inver 1 ; outver 1 aparm 0 aparm(1) 3 $ Changing column 3 = FREQID keyval= -1,0 $ ...to FREQID= -1 getn *.LINCOP getona *.NEWCH0.1 >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 >getona 97 AIPS 1: Got(O) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> NEWCH0.1, FG/1 14. CALIB -> NEWCH0.1(,2,3) SN/1 executed on 1Aug11 ***If we only have one FREQID, all CALIBs are run on the same NEWCH0.1 . If we have multiple FREQIDs, CALIBs for a given source must be run for all NEWCH0.1,2,3 in which that source appears (probably easiest to check with LISTR/SCAN). ***Note: if 'SN' table must be destroyed: task 'extdest'; inext 'sn'; invers 0 ***If solar interference is affecting your data than in CALIB you should use a UVRANGE. The worst case scenario, baselines up to a distance of 1 kilolambda could be afected, while in the best case scenario baselines are affected only up to 0.5kilolambda distance. We recommend using: UVRANGE 0.7,0 for D array UVRANGE 0.7,0 for C array After calibration, if UVPLT still shows signs of solar interference,it means that not enough short baselines were discarded; therefore the calibration has to be redone and UVRANGE to be reset. Note that the Sun might rise or set, especially during a long B-array run, in which case you might wish to split the calibration by timerange in a set affected and a set without solar interference. 14a. Primary (flux density) calibrators --> SN/1 default CALIB calsour '1331+305','' $ flux density calibrator #1 get2n 3C286_L.MODEL.1 >get2n 69 AIPS 1: Got(2) disk= 1 user= 2 type=MA 3C286_L.MODEL.1 nmap 1 ; ncomp 1e6,0 ; inver 1 ; cmethod 'DFT' freqid -1 docal 1 ; gainuse 2 flagver 1 refant 15 $ Change this to your refant solint 0 aparm 4,0,0,0,0,2; $ min 4 antennas; print closures soltype 'L1'; solmode 'A&P'; weightit 1 $ true L1 minimization solcon 0 minamper 10; minphser 10 $ complain if >10%/10d off cparm 0,0,10,10,1 $ complain if avg > 10%/10d off snver 1 getn *.NEWCH0 $ ***NOTE: must run this for all NEWCH0.1,2,3 in which $ this calibrator appears! >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====SN/1 localh> CALIB1: CALIB USING D75-B2 . NEWCH0 . 1 DISK= 1 USID= 2 localh> CALIB1: L1 Solution type localh> CALIB1: UVGET: Using flag table version 1 to edit data localh> CALIB1: Selecting, editing and calibrating the data localh> CALIB1: Doing self-cal mode with CC model localh> CALIB1: SETGDS: imaging done with reprojected tangent point(s) localh> CALIB1: FACSET: source model will be scaled to 14.733 Jy localh> CALIB1: FACSET: 15.457486 Jy found from 1424 components localh> CALIB1: FACSET: scaling factor set to 9.53144E-01 localh> CALIB1: QINIT: did a GET of 5120 Kwords, OFF 3568125 localh> CALIB1: VISDFT: Begin DFT component division localh> CALIB1: VISDFT: fields 1 - 1 chns 1 - 1 in 1 CC models localh> CALIB1: VISDFT: Model components of type Point localh> CALIB1: I Polarization model processed localh> CALIB1: Model computation is 60 percent complete localh> CALIB1: Model computation is 80 percent complete localh> CALIB1: Field 1 used 1424 CCs localh> CALIB1: Determining solutions using amp-scalar averaging localh> CALIB1: Writing SN table 1 localh> CALIB1: RPOL, IF= 1 The average gain over these antennas is 3.113E+00 localh> CALIB1: LPOL, IF= 1 The average gain over these antennas is 3.075E+00 localh> CALIB1: Found 46 good solutions localh> CALIB1: Average closure rms = 0.0012 +- 0.0000 localh> CALIB1: No data were found > 99.0 rms from solution default CALIB calsour '0137+331','' $ flux density calibrator #1 get2n 3C48_L.MODEL.1 >get2n 91 AIPS 1: Got(2) disk= 1 user= 2 type=MA 3C48_L.MODEL.1 nmap 1 ; ncomp 1e6,0 ; inver 1 ; cmethod 'DFT' freqid -1 docal 1 ; gainuse 2 flagver 1 refant 15 $ Change this to your refant solint 0 aparm 4,0,0,0,0,2; $ min 4 antennas; print closures soltype 'L1'; solmode 'A&P'; weightit 1 $ true L1 minimization solcon 0 minamper 10; minphser 10 $ complain if >10%/10d off cparm 0,0,10,10,1 $ complain if avg > 10%/10d off snver 1 getn *.NEWCH0 $ ***NOTE: must run this for all NEWCH0.1,2,3 in which $ this calibrator appears! >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====SN/1 localh> CALIB1: CALIB USING D75-B2 . NEWCH0 . 1 DISK= 1 USID= 2 localh> CALIB1: L1 Solution type localh> CALIB1: UVGET: Using flag table version 1 to edit data localh> CALIB1: Selecting, editing and calibrating the data localh> CALIB1: Doing self-cal mode with CC model localh> CALIB1: FACSET: source model will be scaled to 15.890 Jy localh> CALIB1: FACSET: 16.467989 Jy found from 535 components localh> CALIB1: FACSET: scaling factor set to 9.64883E-01 localh> CALIB1: QINIT: did a GET of 5120 Kwords, OFF 3568125 localh> CALIB1: VISDFT: Begin DFT component division localh> CALIB1: VISDFT: fields 1 - 1 chns 1 - 1 in 1 CC models localh> CALIB1: VISDFT: Model components of type Point localh> CALIB1: I Polarization model processed localh> CALIB1: Model computation is 60 percent complete localh> CALIB1: Model computation is 100 percent complete localh> CALIB1: Field 1 used 535 CCs localh> CALIB1: Determining solutions using amp-scalar averaging localh> CALIB1: Writing SN table 1 localh> CALIB1: RPOL, IF= 1 The average gain over these antennas is 3.255E+00 localh> CALIB1: LPOL, IF= 1 The average gain over these antennas is 3.108E+00 localh> CALIB1: Found 50 good solutions localh> CALIB1: Average closure rms = 0.0008 +- 0.0000 localh> CALIB1: No data were found > 99.0 rms from solution 14b. Secondary (phase) calibrator --> SN/1 ***Check uv restrictions for secondary calibrators carefully. For 1024-008: uvmin=4.5 kl. default CALIB calsour '1024-008','' $ phase calibrator wtuv 0.0 $ may have to set wtuv 0.01 if solutions are $ crazy and uvrange is not 0,0 freqid -1 docal 1 ; gainuse 2 flagver 1 refant 15 $ Change this to your refant solint 0 aparm 4,0,0,0,0,2; $ min 4 antennas; print closures soltype 'L1'; solmode 'A&P'; weightit 1 $ true L1 minimization solcon 0 minamper 10; minphser 10 $ complain if >10%/10d off cparm 0,0,10,10,1 $ complain if avg > 10%/10d off snver 1; UVRANGE 4.5,0 getn *.NEWCH0 $ ***NOTE: must run this for all NEWCH0.1,2,3 in which $ this calibrator appears! >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> Lots of closure errors. calib_secondary_newch0.txt But all but one error are <20 deg and most are <10 deg. No pattern to antenna. So I think it is OK. It is just the quanitity that is alarming. 15b. GETJY SN/1-3, SU/1 executed on 1Aug11 ***Find flux density of secondary calibrator, and set SN table amplitude gains to reflect a common flux density scale. default GETJY sources '1024-008','' $ Secondary (phase) calibrators) calsour '1331+305','0137+331' $ Primary (flux) calibrators freqid -1 snver 0 $ Use all SN tables getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> localh> GETJY1: Source:Qual CALCODE IF Flux (Jy) localh> GETJY1: 1024-008 : 0 B 1 0.89865 +/- 0.00644 16. SN table checks 16a. SNPLT last SN table executed on 1Aug11 16a1. SNPLT phase: default SNPLT inext 'sn';inver 0 pixrange 0 opcode 'alsi';do3col 1;dotv 1; nplots 9 factor 2; symbol 5 xinc 1; optype 'phas'; tvinit getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 ===> Note any phase jumps (on the phase calibrator) for future flagging. The EVLA antennas, even after applying VLANT, still show quite a bit of phase drift. This is OK so long as a linear interpolation between the phases looks like it will work. =====> snplt_table_pha_1.jpg, snplt_table_pha_2.jpg, snplt_table_pha_3.jpg Looks OK. 16a2. SNPLT amplitude: default SNPLT inext 'sn';inver 0 pixrange 0 opcode 'alsi';do3col 1;dotv 1; nplots 9 factor 2; symbol 5 xinc 1; optype 'amp'; tvinit getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 ===> Note whether the amp. is roughly constant for a given antenna/pol'n/IF. ***We have seen a couple cases where the first phase cal scan has a significantly different amplitude gain for the EVLA antennas. The reason is not clear but the raw data do show this effect, so CALIB is doing the right thing. This area warrants further tests, to learn whether we should simply flag the EVLA antennas on the first phase calibrator scan. =====> snplt_table_amp_1.jpg, snplt_table_amp_2.jpg, snplt_table_amp_3.jpg Looks good. 16b. LISTR/GAIN print SN table executed on 1Aug11 default LISTR optype 'gain'; Inext 'sn'; inver 1; freqid -1 dparm 5,0; $ Amp & phase factor 0; docrt -1 outprint '/ta/d75b2/listr_sntable.txt antennas 0; $ may have to list missing antennas explicitly, to avoid $ column overrun. To list missing antennas, use the form $ANTENNAS -3,2,0 to have antennas 3 and 2 left out. getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 --> check for phase jumps and other inconsistencies. ***We have seen a couple cases where the first phase cal scan has a significantly different amplitude gain for the EVLA antennas. The reason is not clear but the raw data do show this effect, so CALIB is doing the right thing. This area warrants further tests, to learn whether we should simply flag the EVLA antennas on the first phase calibrator scan. =====> listr_sntable.txt localhos LISTR(31DEC08) 2 01-AUG-2011 20:18:15 Page 1 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = R Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table Gain amplitudes, 1000 = 10.000000 Stokes = R IF = 1 Freq = 1.418981000 GHz Time Source -- 1-- 2-- 3-- 4-- 5-- 6-- 7-- 8-- 9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24--25--26--27--28 Day # 0 09:28:20 0137+331 270 322 287 304 291 243 321 279 286 349 383 307 366 323 455 373 305 355 260 364 307 472 362 254 301 09:36:25 1024-008 269 316 278 320 293 247 322 280 299 349 378 310 361 316 476 364 310 342 269 370 311 466 358 260 304 10:21:10 1024-008 278 317 287 327 290 246 325 270 282 350 390 324 357 281 445 332 299 305 266 334 291 483 348 256 301 11:07:10 1024-008 277 334 284 317 296 240 316 264 289 360 405 304 352 281 453 338 305 347 271 339 290 494 348 268 305 11:52:50 1024-008 265 329 291 326 300 240 328 251 290 356 350 310 346 294 443 330 300 323 264 337 282 468 340 261 321 12:38:50 1024-008 276 333 289 312 297 247 330 255 294 358 333 314 319 247 431 313 311 319 265 304 267 454 325 261 314 13:24:50 1024-008 258 321 299 309 304 246 317 249 295 358 311 303 322 241 403 315 325 303 272 284 276 443 323 253 299 14:10:40 1024-008 270 332 296 318 299 249 320 251 290 352 349 319 314 250 426 305 324 305 274 317 283 471 334 264 306 14:56:45 1024-008 270 324 286 319 291 253 329 266 296 369 343 309 325 267 464 305 314 331 273 333 301 492 346 264 300 15:42:45 1024-008 272 331 293 322 291 236 333 258 301 346 348 306 336 280 440 332 306 317 268 329 287 484 356 262 309 16:28:50 1024-008 284 314 287 315 245 311 269 287 348 327 311 325 275 440 317 303 322 270 336 279 471 339 264 319 17:13:50 1024-008 275 323 282 313 287 233 315 275 277 388 362 308 344 291 424 340 299 335 266 348 302 456 350 256 294 17:58:55 1024-008 275 317 294 305 292 241 312 278 287 336 300 354 299 456 322 291 311 269 345 312 453 367 298 18:05:55 1331+305 269 322 285 304 292 241 321 260 286 339 306 322 266 432 316 302 317 261 326 291 467 333 302 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = R Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table localhos LISTR(31DEC08) 2 01-AUG-2011 20:18:15 Page 2 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = L Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table Gain amplitudes, 1000 = 10.000000 Stokes = L IF = 1 Freq = 1.418981000 GHz Time Source -- 1-- 2-- 3-- 4-- 5-- 6-- 7-- 8-- 9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24--25--26--27--28 Day # 0 09:28:20 0137+331 301 281 301 304 257 222 296 380 268 317 344 261 360 234 398 344 320 356 252 344 371 393 322 247 297 09:36:25 1024-008 296 272 292 307 261 229 299 379 279 312 356 260 367 231 423 342 319 375 258 348 370 395 319 256 299 10:21:10 1024-008 302 278 300 318 258 234 307 371 271 312 352 282 360 215 396 351 309 329 260 320 349 404 322 253 293 11:07:10 1024-008 309 287 296 318 263 230 292 364 272 318 368 259 363 216 402 342 326 339 265 328 334 400 325 259 298 11:52:50 1024-008 297 292 311 324 258 220 301 361 265 330 341 263 368 232 416 337 318 331 256 327 341 395 315 256 305 12:38:50 1024-008 296 291 304 313 259 231 294 365 269 326 339 261 362 224 410 332 325 345 262 316 353 401 324 252 306 13:24:50 1024-008 291 275 304 314 269 222 294 356 281 327 323 259 361 225 381 360 334 317 260 311 351 385 335 246 299 14:10:40 1024-008 304 289 304 317 260 227 301 347 269 317 356 265 336 215 406 330 333 322 267 329 366 405 325 259 303 14:56:45 1024-008 304 284 302 317 255 225 298 366 272 330 339 268 349 213 418 326 329 346 267 329 374 422 322 256 294 15:42:45 1024-008 308 281 306 320 254 218 310 350 279 313 345 267 356 221 409 344 321 322 266 321 361 392 330 255 300 16:28:50 1024-008 317 278 300 313 223 291 372 263 318 330 259 365 225 405 329 310 330 265 341 358 393 322 256 315 17:13:50 1024-008 308 279 305 313 250 217 295 371 263 350 360 262 367 224 396 355 311 349 262 340 370 383 310 246 293 17:58:55 1024-008 301 274 311 310 250 221 292 385 275 340 262 393 225 418 341 307 332 266 336 393 386 319 293 18:05:55 1331+305 302 282 302 305 256 223 298 356 267 340 260 356 213 390 330 320 329 257 326 362 388 307 303 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = L Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table localhos LISTR(31DEC08) 2 01-AUG-2011 20:18:15 Page 3 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = R Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table Gain phases in degrees Stokes = R IF = 1 Freq = 1.418981000 GHz Time Source -- 1-- 2-- 3-- 4-- 5-- 6-- 7-- 8-- 9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24--25--26--27--28 Day # 0 09:28:20 0137+331 122 168-164 7 151 136 66 114 -18-111 -13 0 -4 -48-106 -85 124 46 -62 180 -30 57 48 125 54 09:36:25 1024-008 112 169-164 -1 152 138 61 102 -16-108 -21 0 -13 -46-103 -87 121 34 -61 168 -35 53 47 123 42 25 21 10:21:10 1024-008 118 162-164 -5 145 131 59 98 -18-115 -28 0 -21 -71-124 -93 111 30 -65 156 -39 37 27 116 53 23 67 11:07:10 1024-008 122 169-165 2 151 136 64 86 -15-138 -38 0 -32 -78-135-100 44 27 -61 139 -47 22 20 116 54 11:52:50 1024-008 119 162-166 -3 146 132 60 75 -19-148 -50 0 -47 -88-147-114 37 17 -59 127 -58 18 11 118 50 12:38:50 1024-008 117 164-165 -9 148 131 61 57 -17-150 -60 0 -53-101-156-128 40 4 -56 114 -69 4 -1 119 52 27 13:24:50 1024-008 115 168-165 -14 152 128 62 44 -20-177 -72 0 -58-110-169-138 42 -5 -57 107 -84 -12 -20 111 51 14:10:40 1024-008 119 169-167 -14 150 130 63 42 -19-164 -75 0 -71-118-178-143 42 -13 -55 95 -92 -12 -30 119 51 14:56:45 1024-008 117 171-164 0 150 131 64 34 -16-173 -89 0 -74-116 179-145 40 -24 -51 91 -91 -21 -26 116 48 26 15:42:45 1024-008 135 175-162 8 153 132 66 50 -18-173 -93 0 -76-113 172-157 44 -18 -35 117-101 -12 -25 128 62 24 20 16:28:50 1024-008 132 173-164 20 135 64 43 -15 163 -91 0 -86-121 168-164 43 -30 -38 105-110 -32 -16 129 60 32 17:13:50 1024-008 138 172-160 9 146 136 68 45 -17 165 -92 0 -80-127 153-175 47 -42 -42 109-124 -42 -48 119 65 21 25 20 17:58:55 1024-008 140 166-162 -12 150 135 66 35 -15 -102 0 -98-134 154 174 42 -44 -44 95-128 -67 -68 70 18:05:55 1331+305 122 170-169 -10 153 133 64 -7 -17 -119 0-109-169 133 174 42 -61 -53 50-126 -71 -78 54 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = R Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table localhos LISTR(31DEC08) 2 01-AUG-2011 20:18:15 Page 4 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = L Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table Gain phases in degrees Stokes = L IF = 1 Freq = 1.418981000 GHz Time Source -- 1-- 2-- 3-- 4-- 5-- 6-- 7-- 8-- 9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24--25--26--27--28 Day # 0 09:28:20 0137+331 -112 52-160 43-135 94 11 -87 -75 175-174 0 123 50-169 -68 121-163 178 4 -55 109 -92 158 -42 09:36:25 1024-008 -124 50-162 32-136 94 2-105 -75 177 175 0 114 48-174 -77 116-176 176 -12 -63 103 -96 152 -56 24 21 10:21:10 1024-008 -115 45-160 31-141 91 3-105 -75 169 170 0 106 24 170 -79 118 180 174 -25 -66 90-117 147 -43 25 11:07:10 1024-008 -113 50-163 37-135 94 7-120 -74 144 159 0 97 15 158 -85 120 169 175 -41 -78 74-124 147 -43 11:52:50 1024-008 -113 48-160 36-138 93 7-130 -77 135 148 0 80 5 150 -99 118 164-179 -51 -86 70-135 152 -45 12:38:50 1024-008 -118 48-160 28-137 93 6-148 -73 134 134 0 72 -8 137-115 117 148-179 -67 -97 55-145 153 -45 27 22 13:24:50 1024-008 -119 52-162 22-133 90 6-161 -75 107 121 0 68 -15 124-125 117 139 180 -72-113 39-167 146 -45 14:10:40 1024-008 -119 50-166 21-138 89 4-169 -79 113 123 0 52 -27 111-134 117 127 180 -89-124 35-179 150 -48 14:56:45 1024-008 -118 54-160 37-134 92 8-176 -74 107 105 0 47 -24 109-136 119 119-173 -91-124 24-173 149 -48 23 15:42:45 1024-008 -100 60-159 44-133 92 8-159 -75 107 101 0 44 -21 102-146 121 122-155 -68-135 31-172 162 -35 23 16:28:50 1024-008 -102 58-164 55 93 7-166 -72 84 103 0 37 -30 97-153 121 110-158 -76-143 12-165 163 -37 30 17:13:50 1024-008 -97 56-162 44-139 94 11-164 -73 85 100 0 49 -39 82-163 121 99-161 -76-156 1 165 153 -32 22 20 23 17:58:55 1024-008 -94 50-161 22-135 93 6-176 -71 96 0 27 -44 67-177 115 97-162 -87-160 -19 142 -27 18:05:55 1331+305 -109 61-163 31-128 94 10 149 -69 90 0 21 -73 68-172 120 86-168-128-153 -21 139 -38 File = D75-B2 .NEWCH0. 1 Vol = 1 Userid = 2 IF = 1 Freq= 1.418981000 GHz Ncor= 2 No. vis= 924236 Polarization = L Subarray = 0 Listing SN table, version 1 SN table has not been applied to a CL table =====> All of the jumps >20 deg in EVLA antennae are consistent with expected trends over time. Jumps that are not consistent: antenna 20,0; timerang 0 10 22 25 0 11 05 45 antenna 26,0; timerang 0 16 30 05 0 17 12 25 antenna 7,0; timerang 0 17 15 15 0 17 57 25 Holes in secondary calibration where had to remove low antennae: antenna 8,0; timerang 0 15 44 05 0 17 12 25 antenna 13,27,0; timerang 0 17 15 15 0 17 57 25 17. UVFLG -> NEWCH0.1 FG/1 executed on 1Aug11 ***If the SN table shows a phase jump on the phase calibrator, you should flag the data between the two phase cal scans which show the jump (since those cannot be calibrated). ***Note that we flag NEWCH0.1, *regardless* of whether the galaxy appears in this data set. This is because later on (step 20/TVFLG) we flag the NEWCH0 data in order from inseq 1 through inseq freqid_max, copying the FG table from one file to the next. UVFLG itself doesn't care whether the flags you enter actually do anything -- it just adds entries to the FG table, which are then applied (or ignored if irrelevant) by other tasks. =====> antenna 20,0; timerang 0 10 22 25 0 11 05 45 default UVFLG antenna 20,0 timer 0 10 22 25 0 11 05 45; opcode 'FLAG' reason 'phase jump' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> antenna 26,0; timerang 0 16 30 05 0 17 12 25 default UVFLG antenna 26,0; timerang 0 16 30 05 0 17 12 25; opcode 'FLAG' reason 'phase jump' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> antenna 7,0; timerang 0 17 15 15 0 17 57 25 default UVFLG antenna 7,0; timerang 0 17 15 15 0 17 57 25; opcode 'FLAG' reason 'phase jump' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> antenna 8,0; timerang 0 15 44 05 0 17 12 25 default UVFLG antenna 8,0; timerang 0 15 44 05 0 17 12 25; opcode 'FLAG' reason 'amp jump' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> antenna 13,27,0; timerang 0 17 15 15 0 17 57 25 default UVFLG antenna 13,27,0; timerang 0 17 15 15 0 17 57 25; opcode 'FLAG' reason 'amp jump' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> NEWCH0.1 FG/1 18. CLCAL NEWCH0 --> CL/3 executed on 1Aug11 ***For multi-FREQID data this becomes rather complicated, since we need a new CL table for every NEWCH0 file, to allow detailed checks and second-order flagging. ***Note that there is no need to work around any phase jumps, since the intervening data are flagged (see step 17 above [UVFLG]). 18a. CLCAL for the primary calibrators -> CL/3 default CLCAL sour= '1331+305','' $ Primary (flux) calibrators calsour= sour interpol 'SELF' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources snver 1 $ if single FREQID getn *.NEWCH0.1 $ do this for all NEWCH0 with primary (flux) $ calibrator data >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> localh> CLCAL1: Using interpolation mode SELF localh> CLCAL1: Processing SN table 1 localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 default CLCAL sour= '0137+331','' $ Primary (flux) calibrators calsour= sour interpol 'SELF' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources snver 1 $ if single FREQID getn *.NEWCH0.1 $ do this for all NEWCH0 with primary (flux) $ calibrator data >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> localh> CLCAL1: Using interpolation mode SELF localh> CLCAL1: Processing SN table 1 localh> CLCAL1: WARNING: SN table 1 has already been applied localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 18b. CLCAL for the phase calibrator and galaxy -> CL/3 default CLCAL sour= '1024-008','SexA','' $ Secondary (phase) calibrator + galaxy calsour= '1024-008','' $ Secondary (phase) calibrator interpol 'SIMP' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources cutoff 120 $ Don't extrapolate/interpolate beyond 120 minutes snver 1 $ if single FREQID getn *.NEWCH0.1 $ do this for all NEWCH0 with secondary (phase) $ calibrator or galaxy data >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> localh> CLCAL1: Using interpolation mode SIMP localh> CLCAL1: Processing SN table 1 localh> CLCAL1: WARNING: SN table 1 has already been applied localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 ***At this point we have a new CL table for all NEWCH0 files. 19a. ANBPL executed on 1Aug11 ***We use ANBPL to check the data weights. Data with very high weights (factor 5-10 or more above normal) should be flagged with UVFLG. default ANBPL docalib 1;gainuse 3 flagver 1 bparm 2,17,0 $ Plot antenna-based weight vs. time nplots 9; dotv 1 docrt 132 $ Print as well as plotting weights -- useful for $ finding exact times of bad weights $ Note you can also use outprint to send to a file. opcode 'alsi' $ Plot all IFs together do3col 1 $ ...using different colors tvinit getn *.NEWCH0.1 $ Must do this separately for every NEWCH0 file >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> anbpl_1.jpg, anbpl_2.jpg, anbpl_3.jpg High weights: 12:11:55 - 12:12:05 antennae 14, 16, 20, 25, 27 19b. UVFLG to eliminate very high weights ***Should UVFLG on NEWCH0.1, even if Evil Weights are seen in NEWCH0.2 or NEWCH0.3 -- we'll be copying FG/1 from NEWCH0.1 to NEWCH0.2 for subsequent second-order flagging. default UVFLG antenna 0,0; timerang 0 12 11 55 0 12 12 05; opcode 'FLAG' reason 'high anbpl' outfgver 1 getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 =====> NEWCH0.1 FG/1 20. TVFLG FG/1 executed on 1Aug11 20a. TVFLG on calibrators: NEWCH0.1 The calibrators should now have constant amplitude and zero phase...apart from source structure for the primary (flux) calibrators, and any uvrange for the secondary (phase) calibrators. If we see huge problems on the calibrators we may have to re-run CALIB etc. -- let's hope not!! default TVFLG calcode '*' $ calibrators only docat -1 $ avoid saving temporary files dohist -1 $ avoid creation of history entries docalib 1 ; gainuse 3 $ apply the new CL table flagver 1;outfgver 1 $ keep all flags in FG/1 dparm 0 dparm(3) 1 $ show baselines twice, to treat all antennas identically -- $ this displays baseline 27-1 as well as 1-27 dparm(6)=10 $ time resolution: should be set to the calibrators' $ integration time, in seconds tvinit getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 ***Within TVFLG: - Set useful defaults: SMOOTH=1 to avoid averaging date before displays SCAN= 20 to use a long time for median filters (AMP/PH DIFF) FLAG ALL CHANNELS FLAG STOKES FULL (usually -- sometimes you'll want NORR or NOLL) ***If individual Stokes need to be flagged, make sure you set the STOKES FLAG to correspond to the polarization that is displayed on the TV SWITCH SOURCE FLAG to ONE-SOURCE to avoid inadvertantly flagging your galaxy (though sometimes you'll want to of course) - Be sure to inspect BOTH polarizations! ***We suggest the following steps: - Set the above defaults - Check AMPLITUDE, AMP DIFF, PHS DIFF. Be wary of known source structure and uv-range limits!! ***Note: occasionally, flagging using UVFLG can be more straightforward (e.g., deleting an antenna). =====> Looks good. 21. Calibration/flagging checks: calibrators 21a. UVPLT executed on 1Aug11 ***Check the amp & phase vs. uv-distance for all calibrators. Amplitude should match the results of SETJY/GETJY. If there are obvious outliers which are not expected due to source structure, go back and flag those (and possibly re-run CALIB etc.). default UVPLT calco '*' docal 1 ; gainuse 3 flagver 1 $ set this to the latest FG version -- may be >1 if $ there are multiple NEWCH0s (FREQIDs). dotv 1 do3col 1 tvinit getn *.NEWCH0.1 $ do this for each NEWCH0 file >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 bparm 0 $ amp. vs. uv-distance =====> uvplt_cals_ch0_amp.jpg Looks good. bparm 0,2 $ phase vs. uv-distance =====> uvplt_cals_ch0_pha.jpg Looks OK. 21b. IMAGR executed on 1Aug11 default IMAGR sources '1024-008','' $ calibrator to image docalib 1; gainuse 3 $ apply latest calibration flagver 1 $ apply latest flags -- set this to the $ highest-numbered FG table outname 'cal' $ some obviously cruddy name cellsize 1 $ for B configuration imsize 1024 $for B array niter 1000 nbox 1 ; clbox 500 500 520 520 $ calibrator should be in the center minpa 121 uvwtfn 'NA'; robust 0.5 dotv -1 uvrange 4.5,0 getn *.NEWCH0.xx $ whichever file has the calibrator you're imaging >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 --> shouldn't see obvious calibration errors or striping. CLEANed flux density should roughly match SETJY/GETJY. Note: If uvwtfn is set to 'NA' it will override any value given to robust. =====> 0.89 Jy, expect 0.90 Jy. 22. TVFLG on the galaxy: NEWCH0.xx ***This is our first run of flagging on the galaxy. - Check the first scan carefully -- often the system isn't "organized" on this first scan - On-line flagging isn't as reliable as in the old days, so there are plenty of hot pixels and hiccups. - We are NOT quacking, because (1) FILLM's NX table isn't correct; (2) QUACK flags data from the beginning-of-scan, whereas we want to flag data from antennas-on-source. 22a. If there's only one NEWCH0 (FREQID): default TVFLG calcode '-CAL' $ non-calibrators only docat -1 $ avoid saving temporary files dohist -1 $ avoid creation of history entries docalib 1 ; gainuse 3 $ apply the new CL table flagver 1;outfgver 1 $ keep all flags in FG/1 dparm 0 dparm(3) 1 $ show baselines twice, to treat all antennas identically -- $ this displays baseline 27-1 as well as 1-27 dparm(6)=10 $ time resolution: should be set to the sources' $ integration time, in seconds tvinit getn *.NEWCH0.1 >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 ***Within TVFLG: - Set useful defaults: SMOOTH=1 to avoid averaging date before displays SCAN= 20 to use a long time for median filters (AMP/PH DIFF) FLAG ALL CHANNELS FLAG STOKES FULL (usually -- sometimes you'll want NORR or NOLL) ***If individual Stokes need to be flagged, make sure you set the STOKES FLAG to correspond to the polarization that is displayed on the TV SWITCH SOURCE FLAG to ONE-SOURCE to avoid inadvertantly flagging your galaxy (though sometimes you'll want to of course) - Be sure to inspect BOTH polarizations! ***We suggest the following steps: - Set the above defaults - Flag first integration in every scan (manual QUACK) -- this should be the first integration AFTER most antennas are on-source, which is why we can't use the usual QUACK. - Check AMPLITUDE, AMP DIFF, PHS DIFF. Be wary of known source structure and uv-range limits!! ***Note: occasionally, flagging using UVFLG can be more straightforward (e.g., deleting an antenna). =====> Amplitude 12:12:06 - 12:38:00 is high in most antennae. Flag. Look at galaxy two segments at a time: timeran 0 9 37 0 0 11 06 00 timeran 0 11 08 00 0 12 38 00 timeran 0 12 39 00 0 14 10 00 timeran 0 14 11 00 0 15 42 00 timeran 0 15 44 00 0 17 13 00 timeran 0 16 30 00 0 17 58 00 Flag pixels and little areas here and there. As well as first scans. 23. Calibration/flagging checks: sources 23a. UVPLT executed on 1Aug11 ***Check the amp vs. uv-distance for the galaxy. If there are obvious outliers which are not expected due to source structure or RFI (i.e., not mostly on short spacings), go back and flag those. Note any obvious short-spacing horrors, which may be due to solar or terrestrial RFI. default UVPLT docal 1 ; gainuse 3 flagver 1 $ set this to the latest FG version -- may be >1 if $ there are multiple NEWCH0s (FREQIDs). dotv 1 do3col 1 source 'SexA','' tvinit getn *.NEWCH0.1 $ whichever file holds the galaxy >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 bparm 0 $ amp. vs. uv-distance =====> uvplt_gal_ch0_amp.jpg Looks OK. 23b. IMAGR executed on 1Aug11 default IMAGR sources 'SexA','' $ the galaxy docalib 1; gainuse 3 $ apply latest calibration flagver 1 $ apply latest flags -- set this to the $ highest-numbered FG table outname 'gal' $ some obviously cruddy name cellsize 1 $ for B configuration imsize 1024 $ for B configurations niter 1000 nbox 0 minpa 121 uvwtfn 'na'; robust 0.5 dotv -1 uvrange 0,0 getn *.NEWCH0.xx $ whichever file has the source you're imaging >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 --> shouldn't see obvious calibration errors or striping. Note that this "channel 0" includes HI emission, so you may see some odd effects (e.g., very woofly noise in B configuration) -- don't panic! =====> See woofly patterns. 24. TASAV -> CH0SAV.1,2,3 executed on 1Aug11 default TASAV outna 'D75-B2MidTa outcla 'ch0sav' getn *.NEWCH0 $ loop over NEWCH0 files (= FREQIDs) >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 outse inseq =====> AIPS 1: 98 2 D75-B2MidTa .CH0SAV. 1 UV 01-AUG-2011 21:32:45 25. TABED SN, FG tables to LINCOP executed on 1Aug11 ***Use TABED to ensure FREQID=-1 for all tables (paranoia is your friend...) 25a. NEWCH0.xx FG/yy -> LINCOP FG/2 default TABED opty 'repl' inext 'fg' aparm 0 aparm(1) 3 $ Changing column 3 = FREQID keyval= -1,0 $ ...which we change to FREQID= -1 inver 1 $ if single FREQID outver 2 getn *.NEWCH0.1 $ if single FREQID getona *.LINCOP >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 >getona 96 AIPS 1: Got(O) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> LINCOP FG/2 25b. NEWCH0.xx SN/yy -> LINCOP SN/1 default TABED opty 'repl' inext 'sn' inver 1 $ if single FREQID outver 0 aparm 0 aparm(1) 6 $ Changing column 3 = FREQID keyval= -1,0 $ ...which we change to FREQID= -1 getn *.NEWCH0 $ if multiple FREQIDs: all should have same merged SN $ table so you can use whichever NEWCH0 file you want getona *.LINCOP >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 >getona 96 =====> LINCOP SN/1 26. CLCAL LINCOP SN/1 --> CL/3 executed on 1Aug11 ***We do CLCAL directly on LINCOP rather than copying, to avoid (even more) confusion in the multiple-FREQID case. ***Note that there is no need to work around any phase jumps, since the intervening data are flagged (see step 17 above [UVFLG]). 26a. CLCAL for the primary calibrators -> CL/3 default CLCAL sour= '1331+305','' $ Primary (flux) calibrators calsour= sour interpol 'SELF' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources snver 1 freqid= 1 $ You must run CLCAL once for each FREQID with $ the relevant calibators present getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> localh> CLCAL1: Using interpolation mode SELF localh> CLCAL1: Processing SN table 1 localh> CLCAL1: WARNING: SN table 1 has already been applied localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 default CLCAL sour= '0137+331','' $ Primary (flux) calibrators calsour= sour interpol 'SELF' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources snver 1 freqid= 1 $ You must run CLCAL once for each FREQID with $ the relevant calibators present getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> localh> CLCAL1: Using interpolation mode SELF localh> CLCAL1: Processing SN table 1 localh> CLCAL1: WARNING: SN table 1 has already been applied localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 26b. CLCAL for the phase calibrator and galaxy -> CL/3 default CLCAL sour= '1024-008','SexA','' $ Secondary (phase) calibrator + galaxy calsour= '1024-008','' $ Secondary (phase) calibrator interpol 'SIMP' gainver 2 ; gainuse 3 refant 15 $ Change this to your refant dobtween -1 $ Don't interpolate entries for different sources cutoff 120 $ Don't extrapolate/interpolate beyond 120 minutes snver 1 freqid= 1 $ You must run CLCAL once for each FREQID with $ the phase calibrator or galaxy present getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> localh> CLCAL1: Using interpolation mode SIMP localh> CLCAL1: Processing SN table 1 localh> CLCAL1: WARNING: SN table 1 has already been applied localh> CLCAL1: SNMRG: Merging SN table localh> CLCAL1: SNMRG: Write 345 merged records from 345 input records localh> CLCAL1: SN2CL: Applying SN tables to CL table 2, writing CL table 3 27. Calibration/flagging checks: calibrators 27a. WIPER executed on 1Aug11 ***Check the amp & phase vs. uv-distance for all calibrators. Amplitude should match the results of SETJY/GETJY, and phase should be zero, apart from known structure (reflected in source model for gain calibrators and uvrange for phase calibrators). If there are obvious, unexpected outliers, go back and flag those (and possibly re-run various tasks...). default WIPER calcode '*' docal 1 ; gainuse 3 doband 1; bpver 1 $ for single-FREQID data sets freqid 1 $ set this to match the calibrator flagver 2 $ should be the latest FG table smooth 7, 235 $ boxcar average over all channels -- use $ smooth 7, 235 if you started with 255 channels dotv 1 do3col 1 bparm 0 tvinit imsize 512 512 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 bparm(2) 1 $ amp. vs. uv-distance =====> wiper_cals_lincop_amp.jpg Looks OK. bparm(2) 2 $ phase vs. uv-distance =====> wiper_cals_lincop_pha.jpg +/-180 deg 27b. POSSM executed on 1Aug11 ***Check vector average of all data for each calibrator. Amplitude should match the results of SETJY/GETJY; phase should be flat, and consistent with zero (corresponding to a point source at the origin)...apart from known source structure and possibly HI absorption. default POSSM calcode '*' docal 1 ; gainuse 3 doband 1; bpver 1 $ for single-FREQID data sets freqid 1 $ set this to match the calibrator flagver 2 $ should be the latest FG table aparm 0 $ Plot data solint 0 $ average all time nplots 0 $ average all baselines aparm 0 aparm(1) 1 $ vector average source='1024-008','' $ Secondary (phase) calibrator uvrange= 4.5,0 $ should be set to eliminate known source structure, $ as in CALIB dotv 1 tvinit getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====> possm_2ndcal_lincop_vecave_rr.jpg, possm_2ndcal_lincop_vecave_ll.jpg Looks good. 27c. IMAGR executed on 1Aug11 default IMAGR docal 1 ; gainuse 3 doband 1; bpver 1 $ for single-FREQID data sets freqid 1 $ set this to match the calibrator flagver 2 $ should be the latest FG table outname 'calline' $ some obviously cruddy name cellsize 1 $ for B configuration imsize 1024 $ for B array niter 200 $ reasonable for a point source nbox 1 ; clbox 500 500 520 520 $ calibrator should be in the center minpa 121 uvwtfn 'na'; robust 0.5 dotv -1 $ so you can go eat lunch bchan 100; echan 105 source '1024-008','' uvrang 4.5,0 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 ***You shouldn't see obvious calibration errors or striping. CLEANed flux density should roughly match SETJY/GETJY. If you _do_ have Evil Stuff, UVLSF will likely take care of it, so don't get too worked up. =====> Looks beautiful. Got 0.90 Jy; expect 0.90 Jy. 28. Calibration/flagging checks: sources 28a.1 WIPER executed on 1Aug11 ***Check the amp vs. uv-distance for the galaxy. If there are obvious outliers which are not expected due to source structure or RFI (i.e., not mostly on short spacings), go back and flag those. Note any obvious short-spacing horrors, which may be due to solar or terrestrial RFI. default WIPER docal 1 ; gainuse 3 doband 1; bpver 1 $ for single-FREQID data sets freqid 1 $ set this to match the galaxy flagver 2 $ should be the latest FG table smooth 0 $do not smooth: smoothing will decrease your noise and $consequently show you a lower flux level than the level $that your data has in fact dotv 1 do3col 1 sources 'SexA','' bparm 0 tvinit imsize 512 512 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 bparm(2) 1 $ amp. vs. uv-distance =====> wiper_lincop_gal_amp.jpg Interference. TVFLG LINCOP data; FG/2 timeran 0 9 37 0 0 11 06 00 Ant 21 systematically high. timeran 0 11 08 00 0 12 38 00 Ant 21 a bit high over all time. timeran 0 12 39 00 0 14 10 00 Flag individual pieces. Ant 21 a bit high over all times. timeran 0 14 11 00 0 15 42 00 Ant 21 a bit high over all times. timeran 0 15 44 00 0 17 13 00 Ant 21 a bit high over all times. timeran 0 16 30 00 0 17 58 00 Ant 21 a bit high over all times. Test removing ant 21 and put in FG/3 to see if that solves the problem: YES! Now extdest FG/3, go back through with TVFLG and flag into FG/2. Now see spikes at specific baseline in timeran 0 14 11 00 0 17 58 00, <5 kl. In channels 153 and 154; just a few time/baseline pieces. wiper_lincop_gal_amp_afterflag.jpg Use bparm(3)=1;bparm(6)=0;bparm(7)=20 if you want to force a range to the Y axis of the WIPER plot. ###It shows a plot similar to the UVPLT output just quicker.It is also useful for identifying which antennas or baselines have calibration problems.If you do find things you want to flag, UVFLG is highly recommended. #####CAREFUL with smoothing when doing WIPER on the source, it should NOT be done at this step.Smoothing will decrease your noise and consequently show you a lower flux level than the level that your data has in fact. #######It is very probable that when doing a WIPER on all the line data, some channels with junk will ruin your WIPER display and you will not be able to really make out what the clipping level should be. If the junk consists of random hot pixels then just run another WIPER in which you force the y axis to a 0-20 range (bparm(3)=1;bparm(6)=0;bparm(7)=20). If the junk comes in a structured manner than further investigations are needed to identify which baselines, in which channels might be missbehaving. Use WIPER only to identify the problematic baselines and channels, and use TVFLG or UVFLG to remove them form the data. 28a.2 Up to which level most of the values(leaving aside the very hot pixels) comfortably fit in? 15 Jy ###This is the value that you will be using in CLIP when combining your data!!! 28b. IMAGR executed on 2Aug11 default IMAGR docal 1 ; gainuse 3 doband 1; bpver 1 $ for single-FREQID data sets freqid 1 $ set this to match the calibrator flagver 2 $ should be the latest FG table outname 'galline' $ some obviously cruddy name cellsize 1.5 $ for B configuration imsize 1024 $ for B configuration niter 1000 $ a light clean, just to see what we've got. niter 0 $ would be ok too, esp. if you IMLIN afterwards nbox 0 ; clbox 0 minpa 121 uvwtfn 'NA'; robust 0.5 dotv -1 $ so you can go eat lunch source 'SexA','' uvrang 0,0 bchan 50; echan 160 getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 ***You shouldn't see obvious calibration errors or striping. You should however see of order 100 mJy of continuum sources in the field, as well as some indication of your galaxy. The latter may be quite confusing for B configuration, which resolves out most of the structure. Don't fret until you've combined all the array configurations. ### If you find a strong continuum source rippling your map even after trying a 512x512 imsize D array configuration cube than refer to Elias and Dana for further steps. =====> Looks good. 28c. Noise Estimations: calculated on 1Aug11 ##The easiest way to calculate the expected sensitivity is to say 7 S(mJy) = ---------------------------- sqrt{ N (N-1) delta_nu t} where 7 is a constant that depends on the system temperature of the receivers(a quite conservative value) N = number of antennas in the array, delta_nu = channel resolution in MHz, and t = integration time in hours. You need to use for N the number of Antennas which have on average been giving good data during the run. The total time should be the actual time spent on source. No need to be super precise, of course. One simply wants to get a ballpark figure which is good to 10-20%. ###Note that for data which are Hanning smoothed (archive data) the channel spacing is equal to the resolution delta_nu. Without Hanning smoothing, the resolution is ~1.4 x delta_nu (note that after offline Hanning smoothing, if you preserve all channels, the resolution becomes 2 x delta_nu; it reverts to a new "double the old delta_nu" if you delete every other channel). ####Finally, if you want to know the noise in a single visibility, use N=2 and t = 1/360, and probably multiply by sqrt{2} because a visibility is a single polarisation as well. =====> N = 27 - two deleted anntenae - 25 delta-nu: Channel separation is 6.1E-3 MHz; no Hanning smoothing so resolution is 1.4x this = 8.54E-3 MHz int time = 7.83 hrs The Expected noise level is: 1.11 mJy The rms Noise level in a line free channel is: 1.50 mJy/bm 29. TASAV -> EndTaB.LINSAV.1 executed on 2Aug11 default TASAV outna 'D75-B2EndTa outcla 'linsav' getn *.LINCOP >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 =====>AIPS 1: 105 2 D75-B2EndTa .LINSAV. 1 UV 02-AUG-2011 01:11:23 30. FITTP executed on 2Aug11 >getn 93 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.CH 0.1 >dataout '/ta/d75b2/DDO75_B2_CH0_orig.FITS >getn 94 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINE.1 >dataout '/ta/d75b2/DDO75_B2_LINE_orig.FITS >getn 95 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-b2BeTa.LINSAV.1 >dataout '/ta/d75b2/DDO75_B2-BegTasav.FITS >getn 98 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2MidTa.CH0SAV.1 >dataout '/ta/d75b2/DDO75_B2-MidTasav.FITS >getn 105 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2EndTa.LINSAV.1 >dataout '/ta/d75b2/DDO75_B2-EndTasav.FITS >getn 97 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.NEWCH0.1 >dataout '/ta/d75b2/DDO75_B2_UV_CALIB_NEWCH0.FITS >getn 96 AIPS 1: Got(1) disk= 1 user= 2 type=UV D75-B2.LINCOP.1 >dataout '/ta/d75b2/DDO75_B2_UV_CALIB_LINCOP.FITS