
Sixteenth Synthesis Imaging Workshop
16-23 May 2018

Introduction to CASA, Calibration
& Basic Imaging

Eighteenth Synthesis Imaging Workshop
13 June – June 21, 2023

Outline

• Short introduction to CASA and the Python interface

– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging

4

• CASA is the offline data reduction package for ALMA and the VLA (data
from other telescopes usually work, too, but not primary goal of CASA)

• Code is C++ (fast) bound to Python (easy access and scripting) (plus
some Qt or other apps)

• Import/export data, inspect, edit, calibrate, image, view, analyze

• Also supports single dish data reduction
• CASA has many tasks and a LOT of tool methods

• Easy to write scripts and tasks
• We have a lot of documentation, reduction tutorials, helpdesk, user

forum

• CASA has some of the most sophisticated algorithms implemented
(multi-scale clean, Taylor term expansion for wide bandwidths, W-term
projection, OTF mosaicing, etc.)

• We have a active Algorithm Research Group, so expect more features in
future versions…

CASA (Common Astronomy Software Applications)

5

CASA Startup
$ casa (or casa –r version, e.g. casa –r 6.4.1 if you have

multiple casa versions installed)

6

CASA Interactive Interface
• CASA runs within pythons scripts or through the interactive

IPython (ipython.org) interface
• IPython Features:

– shell access
– auto-parenthesis (autocall)

– Tab auto-completion

– command history (arrow up and “hist [-n]”)
– session logging

• casaTIME.log – casa logger messages
– numbered input/output

– history/searching

7

Basic Python tips

• CASA uses python 3
• to run a python “.py” script:

execfile(‘<scriptname>’, globals())

example: execfile(‘ngc5921_demo.py’, globals())

Some python specialties:

• python counts from 0 to n-1!

• variables are global when using task interface

• tasknames are objects (not variables)

8

Basic Python tips

Cutting and pasting in CASA:

• indentation matters!

– indentation in python is for loops, conditions etc.

– be careful when doing cut-and-paste to python

– cut a few (4-6) lines at a time

• for longer commands and loops:
– use %cpaste and --

CASA <1>: %cpaste

Long list of CASA commands

--

9

Tasks and tools in CASA
• Tasks - high-level functionality

– function call or parameter handling interface

– these are what you should use in tutorials
• Tools - complete functionality

– tool.method() calls, they are internally used by tasks or can be
used on their own

– sometimes shown in tutorial scripts and CASAGuides

• Applications – some tasks/tools invoke standalone apps

– e.g. casaviewer, mpicasa
• Shell commands can be run with a leading exclamation mark !du –ls

or inside os.system(“shell command”)

(some key shell commands like “ls” work without the exclamation
mark and we will use os.system() exclusively within this tutorial.)

Find the right Task

To see list of tasks with
short help:

taskhelp

12

Task Interface

Examine task
parameters with inp
tclean :

13

Task Interface
• standard tasking interface, similar to AIPS, MIRIAD, etc.

• parameter manipulation commands
• inp, default, saveinputs, tget, tput

• use parameters set as global Python variables

<param> = <value>

(e.g. vis = ‘ngc5921.demo.ms’)
• execute

<taskname> or go (e.g. tclean())

• return values (except when using “go”)
• some tasks return Python dictionaries, assign a variable name to

get them, e.g. myval=imval()

• Very useful for scripting based on task outputs

14

Expandable Parameters
• Boldface parameters have subparameters that unfold when

main parameter is set

15

Parameter Checking

sanity checks of parameters in inp :

erroneous
values in red

16

Help on Tasks
CASAdocs: https://casadocs.readthedocs.io/en/stable/

https://casa.nrao.edu/casadocs/

18

Help on Tasks
Documentation inside CASA:
doc “tclean”

19

Task Execution
• In addition to typing in all variables in the task interface and executing

with go one can write the full parameter set in a line:
taskname(arg1=val1, arg2=val2, ...)

e.g.
tclean(vis=‘input.ms’,imagename=‘galaxy’,
robust=0.5, imsize=[200,200])

– unspecified parameters will be set to their default values (globals
not used; i.e. not to previously set variables)

– Useful in scripts, but also in ‘pseudo-scripts’:
• To keep a record it is frequently a good idea to write down the

full line as above in an editor, then cut and paste into CASA.

• When changes are needed, change in editor and cut and paste
again. That is good practice to keep a record of the exact input.

• But note that the logger is also repeating the full task command

What is a Measurement Set?
• CASA stores u-v data in directories called “Measurement Sets”

TO DELETE THEM USE rmtables(“measurement_set.ms”) or
os.system(”rm –rf measurement_set.ms”)

• These data sets store two copies of the data (called “columns”):

• Additionally a “model” may be stored separately.
THIS IS USED TO CALCULATE WHAT THE TELESCOPE SHOULD HAVE OBSERVED.

• Each data point may also be “flagged,” i.e., marked bad.
IN THIS CASE IT IS IGNORED (TREATED AS MISSING) BY CASA OPERATIONS.

“Data” Column

Contains the raw,
unprocessed

measurements.

“Corrected” Column

Usually created by applying
one or more calibration

terms to the data.

Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging

Steps to a Calibrated Dataset

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE TIME VARIABILITY

Calibrate the Amplitude and Phase vs. Time of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE FREQ. VARIABILITY

Set the Absolute Amplitude Scale With Reference to a Known Source
PLANET (MODELED), MONITORED QUASAR, ETC.

Apply all corrections to produce calibrated data

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
IMPROVES SHORT TERM VARIABILITY OF PHASE, DATA WEIGHTS AND FLUX SCALE

Applying Calibration in Practice:
Calibration Tables
• Calibration yields estimates of phase and amplitude corrections.

E.G., AS A FUNCTION OF TELESCOPE, TIME, FREQUENCY, POLARIZATION.

• CASA stores these corrections in directories called “calibration tables.”
TO DELETE THEM USE rmtables(“my_table.gcal”)

OR os.system(”rm –rf my_table.gcal”)

• These are created by calibration tasks:
E.G., gaincal, bandpass, gencal

• Applied via “applycal” to the data column and saved as corrected.

“Data” Column
Still holds original data

“Corrected” Column
Now holds corrected data.

(“Data” Column)

Calibration Table(s)

Measurement Set
Measurement Set

applycal
CASA Task

Define/Assume a model for the
data (e.g., setjy)

Measurement Set

Model
(defaults to point source)

Define what the telescope SHOULD have seen.

Measurement Set
(with associated model)

Basic Flow to Create/Apply a Calibration Table

Calibration Task
(e.g., gaincal, bandpass)

Derive the corrections needed to make the data match the model.

Calibration Table
Measurement Set

(with associated model)

Basic Flow to Create/Apply a Calibration Table

Apply Calibration
applycal

Apply these corrections to derive the corrected (calibrated) data.

Measurement Set

Corrected column now
holds calibrated data.Calibration Table

Measurement Set

Data Column

Basic Flow to Create/Apply a Calibration Table

Calibration Task
(e.g., gaincal, bandpass)

Apply Calibration
applycal

Define/assume a model for the
data (e.g., setjy)

Measurement Set

Model
(defaults to point source)

Define what the telescope SHOULD have seen.

Derive the corrections needed to make the data match the model.

Apply these corrections to derive the corrected (calibrated) data.

Measurement Set

Corrected column now
holds calibrated data.

Calibration Table

Calibration Table

Measurement Set

Data Column

Measurement Set
(with associated model)

Measurement Set
(with associated model)

Basic Flow to Create/Apply a Calibration Table

Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE TIME VARIABILITY

Calibrate the Amplitude and Phase vs. Time of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE FREQ. VARIABILITY

Set the Absolute Amplitude Scale With Reference to a Known Source
PLANET (MODELED), MONITORED QUASAR, ETC.

Apply all corrections to produce calibrated data

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
IMPROVES SHORT TERM VARIABILITY OF PHASE, DATA WEIGHTS AND FLUX SCALE

Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna

Correction Tables

Our Goal Today: Calibrate and Image the data
for the Gravitationally Lensed Galaxy SDP.81

ALMA Long Baseline Campaign
• Successful test of ALMA’s longest baselines (i.e. highest resolutions) run

from September through December 2014
• Baselines out to 15km (resolution up to 0.023”)
The Gravitationally Lensed Galaxy SDP.81
• At z = 3.04, the star-forming galaxy SDP.81 sits behind a massive

foreground elliptical galaxy (z = 0.299) which acts as a gravitational lens.
• During the Long Baseline Campaign, the dust continuum at 151, 236, and

290 GHz was mapped as well as emission lines from CO and water.
• These images allow for the determination of the physical and chemical

properties of the lensed galaxy down to 180 pc size scales (similar to giant
molecular clouds in the Milky Way … but at a redshift of 3!)

30

Our Goal Today: Calibrate and Image the data
for the Gravitationally Lensed Galaxy SDP.81

31

Our Goal Today: Calibrate and Image the data
for the Gravitationally Lensed Galaxy SDP.81

32

Blue: HST/WFC3 F160W data
shows lensing galaxy at z~0.3
Red: ALMA Band 6 emission.

We will image the dust continuum emission and
CO line emission observed at Band 4.

Combined 3 color image of dust
continuum from 3 ALMA Bands

Red: Highest Resolution (Band 7)
ALMA Dust Continuum

Link to paper: http://arxiv.org/abs/1503.02652

Image Credits: ALMA
(NRAO/ESO/NAOJ);
B. Saxton NRAO/AUI/NSF;
NASA/ESA Hubble,
T. Hunter (NRAO)

Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory

– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging

An Overview of your Directory

34

In your home directory there should be two sub-directories labeled /Calibration and
/Imaging.
In /Calibration you should have:

- SDP81_B4_uncalibrated.ms.split (the data file containing uncalibrated data
with minor initial processing applied)

- data_prep.py (script detailing the initial processing that has already been
applied)

- calibration.py (the script we will work through together to calibrate the data)

In /Imaging you have:
- SDP.81_Band4_continuum.ms (fully calibrated continuum measurement set ready

for imaging)
- SDP.81_Band4.ms (fully calibrated measurement set containing both continuum

and line emission ready for imaging)
- SDP.81_Band4_COline.ms.contsub (fully calibrated line-only measurement set)
- imaging.py (the script we will work through together to image the data)
- combination.py (a script detailing the steps taken to create the measurement sets

ready for imaging: this is just for reference we won’t be using it!)

An Overview of your Directory

35

To begin, if you haven’t already done so … start casa:

casa

os.system(“ls")

!ls

Be sure you have run all of the commands in Startup

The dataset we will be working with is large, so there is likely not enough memory
to save the data at various steps throughout the reduction process. Should your
dataset get corrupted, you can untar SDP81_B4_uncalibrated.ms.split.tgz.

Note that you can run system commands from within casa via:

When you start casa …

Initial Data Preparation
Downloading data from the ALMA archive will return raw data along with the
scripts necessary for calibrating the data. In the interest of time, we have
already applied some initial corrections to the raw data for you. All of these
steps are detailed in

Here we will briefly explain the steps taken in data_prep.py
• Import the raw data into a casa measurement set.
• Occasionally a dataset will require a fix to some of the metadata (i.e. the

header). In this case, some coordinates in the metadata are adjusted.
• Data that is known to be irrelevant to calibration or to be problematic

(even without inspection of the data) is flagged. Examples: data taken when
the telescope was not on source yet, when the system temperature load
was too close to the beam, when the receivers were not yet tuned)

• Create 3 correction tables (WVR, Tsys, antenna positions) and apply them.
• The output of data_prep.py is SDP81_B4_uncalibrated.ms.split

(we will start calibration with this data file)

37

data_prep.py

ALMA Online Corrections
• Water Vapor Radiometer (WVR) – phase delay due to atmosphere

o Key to correct short-timescale phase variations
o Phase calibration, variable with time

• System Temperature (Tsys) – atmospheric emission/opacity
o Key to gain transfer across elevation
o Amplitude calibration, variable with frequency (observed in “TDM”)
o System temperatures of order ~100 K at Band 3 to ~1000 K at Band 9

• Antenna Positions – updates in accuracy of antenna positions

These corrections are provided by the observatory for each dataset.
The datasets associated with this tutorial already have these corrections applied

and the steps are detailed in data_prep.py only for reference.

ALMA Online Corrections: Tsys
SDP.81

ALMA Online Corrections: Tsys
High Frequency Example: TW Hydra
(note much higher system temperatures)

ALMA Online Corrections: WVR
SDP.81

ALMA Online Corrections: WVR

Phase vs. Time
One 600m Baseline

~600 GHz
Before WVR, After WVR

High Frequency Example: TW Hydra

ALMA Online Corrections:
Antenna Positions
SDP.81: These are the offsets determined for our dataset.

antenna x_offset y_offset z_offset total_offset baseline_date
DV14 -4.61575e-04 7.57190e-04 1.74002e-03 1.95296e-03 2014-10-31 11:27:40
DA50 4.24031e-05 -4.98282e-04 1.51997e-03 1.60012e-03 2014-10-31 11:27:40
DV22 -9.64679e-04 1.07473e-03 3.88599e-04 1.49554e-03 2014-10-31 11:27:40
DV08 5.53798e-04 -1.32566e-03 2.52869e-04 1.45877e-03 2014-10-31 11:27:40
DA64 -2.80747e-04 2.60536e-04 1.39146e-03 1.44321e-03 2014-10-31 11:27:40
DA54 7.92693e-04 -1.16213e-03 -4.01242e-05 1.40731e-03 2014-10-31 11:27:40
DA62 1.95323e-04 -4.82360e-06 1.32798e-03 1.34227e-03 2014-10-31 11:27:40
DV17 1.09515e-04 -3.07546e-04 1.20603e-03 1.24944e-03 2014-10-31 11:27:40
DV04 3.70800e-04 -4.36427e-04 4.07359e-04 7.02782e-04 2014-10-31 11:27:40
DA41 5.09151e-04 -3.88547e-04 1.20386e-04 6.51687e-04 2014-10-31 11:27:40

Note: these offsets are in units of meters!!

Getting Oriented

44

Run the listobs task (output sent to casalogger)

listobs(”SDP81_B4_uncalibrated.ms.split")
==
MeasurementSet Name: SDP81_B4_uncalibrated.ms.split MS Version
==
Timerange (UTC) Scan FldId FieldName nRows SpwIds Average Interval(s) ScanIntent
09:33:43.0 - 09:33:58.5 2 0 J0825+0309 23400 [0,1,2] [0.48, 0.48, 0.48] [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]
09:34:19.2 - 09:39:35.9 3 0 J0825+0309 195000 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_BANDPASS,CALIBRATE_WVR]
09:39:53.7 - 09:40:09.3 4 1 J0854+2006 23400 [0,1,2] [0.48, 0.48, 0.48] [CALIBRATE_ATMOSPHERE, CALIBRATE_WVR]
09:40:24.8 - 09:43:02.6 5 1 J0854+2006 97500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_AMP,CALIBRATE_FLUX,CALIBRATE_WVR]

09:43:20.9 - 09:43:36.5 6 2 J0909+0121 23400 [0,1,2] [0.48, 0.48, 0.48] [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]
09:43:54.3 - 09:44:04.4 7 2 J0909+0121 6500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_PHASE,CALIBRATE_WVR]
09:44:20.0 - 09:44:35.5 8 3 SDP.81 23400 [0,1,2] [0.48, 0.48, 0.48] [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]
09:45:08.1 - 09:46:12.1 9 3 SDP.81 39000 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [OBSERVE_TARGET#ON_SOURCE]
09:46:14.1 - 09:46:24.2 10 2 J0909+0121 6500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_PHASE,CALIBRATE_WVR]
09:46:25.7 - 09:47:29.8 11 3 SDP.81 39000 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [OBSERVE_TARGET#ON_SOURCE]
09:47:31.8 - 09:47:41.9 12 2 J0909+0121 6500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_PHASE,CALIBRATE_WVR]
09:47:43.4 - 09:48:47.4 13 3 SDP.81 39000 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [OBSERVE_TARGET#ON_SOURCE]
09:48:49.4 - 09:48:59.5 14 2 J0909+0121 6500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_PHASE,CALIBRATE_WVR]
09:49:01.1 - 09:50:05.1 15 3 SDP.81 39000 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [OBSERVE_TARGET#ON_SOURCE]
09:50:07.1 - 09:50:17.2 16 2 J0909+0121 6500 [0,1,2,3] [2.02, 2.02, 2.02, 2.02] [CALIBRATE_PHASE,CALIBRATE_WVR]

Getting Oriented

45

Run the listobs task

listobs(”SDP81_B4_uncalibrated.ms.split")

==
MeasurementSet Name: SDP81_B4_uncalibrated.ms.split MS Version
==
Fields: 4
ID Code Name RA Decl Epoch SrcId nRows
0 none J0825+0309 08:25:50.338355 +03.09.24.52006 J2000 0 218400
1 none J0854+2006 08:54:48.874929 +20.06.30.64088 J2000 1 120900
2 none J0909+0121 09:09:10.091592 +01.21.35.61768 J2000 2 318500
3 none SDP.81 09:03:11.610000 +00.39.06.70000 J2000 3 1287000
Spectral Windows: (4 unique spectral windows and 1 unique polarization setups)
SpwID Name #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Num Corrs
0 ALMA_RB_04#BB_2 64 TOPO 145550.922 -31250.000 2000000.0 144566.5468 2 XX YY
1 ALMA_RB_04#BB_3 64 TOPO 153727.218 31250.000 2000000.0 154711.5928 3 XX YY
2 ALMA_RB_04#BB_4 64 TOPO 155459.988 31250.000 2000000.0 156444.3626 4 XX YY
3 ALMA_RB_04#BB_1 1920 TOPO 143586.559 -976.562 1875000.0 142649.5468 1 XX YY

Getting Oriented

46

Run the plotants task

plotants(”SDP81_B4_uncalibrated.ms.split",
figfile="plotants.png")

plotms

A general-purpose graphical interface for plotting and
flagging UV data and calibration tables

Can be started in the usual casapy interface:
inp plotms

Can be fully specified in the CASA command line (e.g.):
plotms(vis=“SDP81_B4_uncalibrated.ms.split",

xaxis="time", yaxis="amp", ydatacolumn=”data",
field="0,1,2", averagedata=True, avgchannel="1e3",
avgtime="1e3", coloraxis="field")

Getting Oriented

48

inp plotms

Getting Oriented

49

plotms(vis=“SDP81_B4_uncalibrated.ms.split",
xaxis="time", yaxis="amp", averagedata=True,
avgchannel="1e3", coloraxis="field")

50

Top Tabs

Graphics Panel

Control Panel
Tools Panel

Si
de

 T
ab

s
Data Review: plotms

51

Data Review: plotms

Control panel: Data

The modification of certain parameters
may not be applied if ‘Plot’ is clicked
and ‘force reload’ is unchecked.

52

Data Review: plotms

Control panel: Axes

Drop down menus to select x and y axes:
time, channel, frequency, velocity,
amplitude, phase, uvdist, elevation, etc.

Data Review: plotms

Scan
Field
Spw
Baseline
Antenna

Iteration

Tool panel

53

54

Data Review: plotms

Display

Colorize by:
Scan
Field
Spw
Antenna1
Antenna2
Baseline
Channel
Correlation

Data Review: plotms

Transformations

Frame: TOPO, GEO, BARY, LSRK, LSRD, etc..

55

Getting Oriented

56

plotms(vis=”SDP81_B4_uncalibrated.ms.split",
xaxis=”u", yaxis=“v", averagedata=True,
avgchannel="1e3", coloraxis="field")

‘u’ and ‘v’ in
meters

Plot ‘uwave’ Vs.
‘vwave’

for units of
wavelength

Initial Flagging

57

Initial Flagging includes data we know to be problematic even
without visual inspection:
• Shadowing

– Issue at low elevations
– Issue for compact arrays
– In CASA: flagdata(vis=‘my_data.ms’, mode=‘shadow’)

• Observing Log
– Many observatories will note weather or hardware problems

that affect the data.
• Other obvious errors

Be sure you have run all of the commands in
Getting Oriented and Initial Flagging

An Example of Initial Flagging:
Edge Channels

58

Data that should be flagged

Amplitude vs. Channel

Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration

• Data Inspection and Flagging

• Basic Imaging

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Bandpass, Phase and Amplitude Calibration

ALMA Data Reduction Tutorial

Synthesis Imaging Summer School

Derive Calibration Tables
• setjy: set “model” (correct) visibilities using known model for a calibrator
• bandpass: calculate bandpass calibration table (amp/phase vs frequency)
• gaincal: calculate temporal gain calibration table (amp/phase vs time)
• fluxscale: apply absolute flux scaling to calibration table from known source

Manipulate Your Measurement Set
• flagdata/flagcmd/flagmanager: flag (remove) bad data
• applycal: apply calibration table(s) from previous steps
• split: split off calibrated data from your ms

Inspect Your Data and Results
• plotms: inspect your data and calibration tables interactively

Key Tasks for Calibration

62

What is Bandpass Calibration?

As we have seen all week, the goal of calibration is to find the relationship
between the observed visibilities, Vobs, and the true visibilities, V :

Vi j(t,n)obs = Vi j(t,n)Gi j(t)Bi j(t,n)

where t is time, n is frequency, i and j refer to a pair of antennas (i,j)
(i.e., one baseline), G is the complex "continuum" gain, and B is the
complex frequency-dependent gain (the "bandpass").

Bandpass calibration is the process of measuring and correcting the
frequency-dependent part of the gains, Bi j(t,n).

Bi j may be constant over the length of an observation, or it may have a
slow time dependence.

Why is BP Calibration important?

63

Good bandpass calibration is a key to detection and accurate measurement
of spectral features, especially weak, broad features.

Bandpass calibration can also be the limiting factor in dynamic range of
continuum observations.

• Bandpass amplitude errors may mimic changes in line structure with n

• n-dependent phase errors may lead to spurious positional offsets of
spectral features as a function of frequency, mimicking doppler motions

• n-dependent amplitude errors limit ability to detect/measure weak line
emission superposed on a continuum source. Consider trying to
measure a weak line on a strong continuum with ~ 10% gain variation
across the band.

Bandpass Calibration

• Determine the variations of phase and amplitude with frequency

• Account for slow time-dependency of the bandpass response

• We will arrive at antenna-based solutions against a reference antenna

– In principle, could use autocorrelation data to measure antenna-based
amplitude variations, but not phase

– Most bandpass corruption is antenna-based, yet we are measuring
N(N-1)/2 baseline-based solutions

– Amounts to channel-by-channel self-cal

64

Bandpass Calibration:
What makes good calibrators?

• Best targets are bright, flat-spectrum sources with featureless spectra

– Although point-source not absolutely required, beware frequency
dependence of resolved sources

– If necessary, can specify a spectral index using setjy

• Don’t necessarily need to be near science target on the sky

65

CASA Tasks for Bandpass Calibration

• We will use gaincal to measure time variation of phase

• Then use bandpass task
– We will calibrate channel-to-channel variation (preferred method)

– Alternatively, could fit a smooth function

– Pay close attention to solutions; e.g. bright calibrators are rare, esp. at
Band 9

• Use applycal to apply the bandpass solution to other sources

66

67

Create a phase solution for the bandpass calibrator

Run a listobs and note which source is the bandpass calibrator.
This is J0825+0309 (identified as field 0).
listobs(”SDP81_B4_uncalibrated.ms.split")

Gaincal is the general purpose task to solve for time-dependent
amplitude and phase variations for each antenna. Here we carry
out a short-timescale phase solution ("int") on the bandpass
calibrator. This is saved as a calibration table "phase_int_bpass.cal".
os.system("rm -rf phase_int_bpass.cal")
gaincal(vis=“SDP81_B4_uncalibrated.ms.split",

caltable="phase_int_bpass.cal",
field="0",
spw=“0:22~42,1:22~42,2:22~42,3:800~1200”,
scan=“3”,solint="int",refant=”DA56”, calmode="p”)

Plot phase solutions (phase vs. time)
Plot the calibration table, showing phase vs. time with a separate
plot for each antenna. The two colors are the two correlations
(i.e., polarizations).
plotms(vis="phase_int_bpass.cal",
xaxis="time",yaxis="phase", gridrows=3, gridcols=3,
iteraxis="antenna", spw="0", coloraxis='corr',
plotrange=[0,0,-180,180])

Create the bandpass solution
Now carry out a bandpass solution. This will solve for the
amplitude and phase corrections needed for each channel for
antenna. We use gaintable to feed the short-timescale phase
solution to the task. This means that this table will be applied
before the bandpass solution is carried out. We will deal with the
overall normalization of the data later, for now we tell the task to
solve for normalized (average=1) solutions via solnorm=True.
os.system("rm -rf bandpass.cal")
bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",
field="0",
solint="inf”,
scan=“3”,combine=“scan”,refant=”DA56",
solnorm=True,bandtype=“B”,
gaintable="phase_int_bpass.cal”)

Plot the result with plotbandpass
We inspect the phase and amplitude behavior of the calibration
plotting the corrections for each antenna using plotbandpass.
We tell it to plot both phase and amplitude for four spectral
windows at a time. Cycle through the plots.
plotbandpass(caltable="bandpass.cal",

xaxis="chan", yaxis="both", subplot=42)

Create a smoother bandpass for spw 3
Notice how noisy the solutions are on one of the spectral
windows (spw 3). We can also calibrate the bandpass by
averaging several channels at once, which is good if you think
that signal-to-noise may be an issue and the solutions can be
described as smoothly varying functions. We do this for the noisy
spectral window by setting a solution interval of 5 channels.
For spws 0,1,2: For spw 3:
os.system("rm -rf bandpass_smooth.cal")

bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",

field="0",

spw=“0,1,2”,

scan=“3”,

solint="inf”,

combine=“scan”,

refant=”DA56",

solnorm=True,

bandtype=“B”,

gaintable="phase_int_bpass.cal”)

os.system("rm -rf bandpass_smooth.cal")

bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",

field="0",

spw=“3”,

scan=“3”,

solint="inf,5ch”,

combine=“scan”,

refant=”DA56",

solnorm=True,

bandtype=“B”,

append=True,

gaintable="phase_int_bpass.cal”)

Plot the new (smoother) bandpass solutions
Now plot the new (smoother) bandpass solutions. There are less
points and they are less noisy in absolute scale. We will use
these in our calibration.
plotbandpass(caltable="bandpass_smooth.cal",

xaxis="chan", yaxis="both", subplot=42)

Apply the bandpass solutions
Apply the solutions - both in time and frequency - to the data using
applycal. This creates a new corrected data column.
applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=“",
gaintable=["bandpass_smooth.cal","phase_int_bpass.cal"],

interp=["linear","linear"],
gainfield=["0","0"],

applymode=‘calonly’)

Plot the results of the calibration by comparing the dependence of
phase and amplitude on channel before and after calibration.
At this point, we are going to look at how the solutions have fixed the
phase and amplitude variations vs. frequency. You can try the non-
channel averaged data to see if there are any differences.

Phase vs Channel before
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan",

yaxis="phase", ydatacolumn="data", field="0",
averagedata=True, avgtime="1e3", coloraxis="corr")

Phase vs Channel after
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan",

yaxis="phase", ydatacolumn="corrected", field="0",
averagedata=True, avgtime="1e3", coloraxis="corr")

Amp vs. Chan before
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan",
yaxis="amp", ydatacolumn="data",field="0",
averagedata=True, avgtime="1e3",coloraxis="corr")

Amp vs. Chan after
plotms(vis=“SDP81_B4_uncalibrated.ms.split", xaxis="chan",
yaxis="amp", ydatacolumn="corrected",field="0",
averagedata=True, avgtime="1e3",coloraxis="corr")

Be sure you have run all of the commands in
Bandpass Calibration

Our first attempt at bandpass calibration
is now complete.

Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna

Correction TablesDO
NE

DO
NE

DO
NE

DO
NE

Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of

each telescope as a function of time.
(Solutions derived to give best match of data

to model once they are applied.)

Measurement Set

Data column holds
observations.

Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of

each telescope as a function of time.
(Solutions derived to give best match of data

to model once they are applied.)

Measurement Set

Data column holds
observations.

(Optional)
One or More Calibration Tables

(applied on the fly before solution)

(Optional)
Associate a model (expected
sky distribution) with the MS.

(Else assume point source)

Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of

each telescope as a function of time.
(Solutions derived to give best match of data

to model once they are applied.)

Measurement Set

Data column holds
observations.

(Optional)
One or More Calibration Tables

(applied on the fly before solution)

(Optional)
Associate a model (expected
sky distribution) with the MS.

(Else assume point source)

oWhat time interval to solve over?
o Requirements for a good solution.

o Reference Antenna

Set Model for the Quasar
First things first - we need to make sure that we have valid
models in place for our data. Our flux reference source is a
quasar J0854+2006 (field 1). We will first query the calibrator
catalog and then use those outputs in the task "setjy” to apply
the model to our data. In other words, we use a routine to parse the
ALMA calibrator database, interpolate the expected flux for the
calibrator reference, and put in the 'model' column of the data using
setjy.
aU.getALMAFluxForMS(“SDP81_B4_uncalibrated.ms.split”)

setjy(vis=”SDP81_B4_uncalibrated.ms.split”,
standard=“manual”,

field=1,
fluxdensity = [3.986837, 0, 0, 0],

spix = -0.456158813,

reffreq = “149.593012274GHz’)

Gain Calibration: Long-term phase solutions
First, we calibrate the phase for each antenna for each scan.
This is the right cadence to transfer to the science target, which
is visited only on a ~ every-other-scan timescale.

os.system("rm -rf phase_inf.cal")

gaincal(vis=”SDP81_B4_uncalibrated.ms.split",
caltable="phase_inf.cal",

field=”0~2",
solint="inf",

refant=”DA56”,

gaintype=“G”,
gaintable=“bandpass_smooth.cal”)

Plot the resulting phase calibration
plotms(vis="phase_inf.cal",xaxis="time",yaxis="phase",

gridrows=3, gridcols=3, iteraxis="antenna", spw='0',
coloraxis='corr', plotrange=[0,0,-180,180],
symbolsize=10, plotfile="ss20_phase_scan.png")

Gain Calibration: Short-term Phase Solutions
Now we want to remove any short timescale phase variation
from the sources involved in the bandpass and flux calibration.
We do so using gaincal.

os.system("rm -rf phase_int.cal")
gaincal(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="phase_int.cal",

field=”0~2",
solint="int",

refant=”DA56”,
gaintype=“G”,

calmode="p",

gaintable=“bandpass_smooth.cal")

Plot the resulting short timescale phase
calibration
plotms(vis="phase_int.cal",xaxis="time",yaxis="phase",gridro

ws=3, gridcols=3, iteraxis="antenna", spw="0",
coloraxis='corr', plotrange=[0,0,-180,180],
symbolsize=10, plotfile="ss20_phase_int.png")

Gain Calibration: Long-Term Amplitude Solutions
Now let's derive an amplitude solution, first applying the short-
timescale phase solution.
os.system("rm -rf ampli_inf.cal")
gaincal(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="ampli_inf.cal",

field=”0~2",
solint="inf",

refant=”DA56”,
gaintype=“T”,

calmode="a",

gaintable=[”bandpass_smooth.cal”,”phase_int.cal”])

Plot the solution as amplitude vs. time
for each antenna and spectral window
• plotms(vis="ampli_inf.cal",xaxis="time",yaxis="amp",grid

rows=3,gridcols=3,iteraxis="antenna",spw='0',
coloraxis='corr', plotrange=[0,0,
0.125,0.15],symbolsize=10,
field='2',plotfile="ss20_ampli_scan.png")

Be sure you have run all of the commands in
Gain Calibration

Our first attempt at gain calibration is
now complete.

Set flux scale of calibrators
The gaincal solved for the amplitude scaling to make the data
match the current model. For the quasar J0854+2006, we have
taken care to set the correct model using setjy. For the other two
calibrators, however, we don't a priori know the flux. Those have
been calibrated using the default model, which is a point source of
amplitude 1 Jy at the middle of the field. We now use fluxscale to
bootstrap from the (correct) flux of the quasar through the
amplitude calibration table to estimates of the true flux of the other
two calibrators. This will output both a new table and the flux
estimates themselves.
os.system("rm -rf flux_inf.cal”)
fluxscaleDict = fluxscale(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="ampli_inf.cal",

fluxtable="flux_inf.cal",
reference=“1")

Plot the rescaled flux solutions
Plot the rescaled flux table, which now should contain the correct
flux calibrations.
plotms(vis="flux_inf.cal", xaxis="time",yaxis="amp",

gridcols=3, gridrows=3, iteraxis="antenna”,
plotrange=[0,0,0.13,0.18],symbolsize=10,plotfile=“ss20_flux_scan
.png”)

Be sure you have run all of the commands in
Setting the Flux Scale

We have now bootstrapped the known
flux of the flux reference quasar to the
fluxes of our other calibrators.

Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna

Correction TablesDO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE

Apply Bandpass, Phase, & Flux Calibration Tables

For our bandpass and flux calibrators (fields 0 & 1), we apply our
bandpass calibration and our gain calibration
(short term phase + flux).
For our science target and phase calibrator (fields 2 & 3), we apply
our bandpass calibration and our gain calibration
(long term phase + flux).
For field 0:
applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”0",

gaintable=[”bandpass_smooth.cal”,”phase_int.cal","flux_inf.cal"],

gainfield=[“”,”0”,”0”],

interp="linear,linear",

calwt=True,

flagbackup=False)

Apply Bandpass, Phase, & Flux Calibration Tables

For field 1:

For fields 2 & 3:

applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”1",

gaintable=[”bandpass_smooth.cal”,”phase_int.cal", "flux_inf.cal"],

gainfield=[“”,”1”,”1”], interp="linear,linear",

calwt=True, flagbackup=False)

applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”2,3",

gaintable=[”bandpass_smooth.cal”,”phase_inf.cal", "flux_inf.cal"],

gainfield=[“”,”2”,”2”],

interp="linear,linear",

calwt=True, flagbackup=False)

Be sure you have run all of the commands in
Applying Calibrations

Renormalization

• A visibility amplitude calibration error that affects fields containing strong line emission
• Corrected in affected datasets that have >10% flux offset since Cycle 7.
• Knowledgebase Article:

– https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-
issues-caused-by-alma-s-normalization-strategy

• New pipeline stage for pipeline-calibrated datasets
• Manually calibrated datasets are checked and corrected before delivery– this dataset

does not require renorm correction, but script provided at the end of the calibration
script – uses pipeline renorm module

https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-issues-caused-by-alma-s-normalization-strategy
https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-issues-caused-by-alma-s-normalization-strategy

Normalization and Tsys Calibration

• Traditional scheme

𝑐!"(𝑓) [V2]
#!"(%)

#!! # #"" #
[] 𝑐!"(𝑓) [V2]

'! # () '" #[(]

#!! #) #"" # [,
$]

𝑐!"(𝑓)[K]

• ALMA scheme

𝑐!"(𝑓) [V2]
#!"(%)

#!!(%)#""(%)
[] 𝑐!"(𝑓) [V2]

'!(%) ()'"(%)[(]

#!!(%))#""(%) [,$]
𝑐!"(𝑓)[K]

norm cal

norm cal

Averaged

Not spectrally averaged

Normalization and Tsys Calibration

𝑐!"(𝑓) [V2] 𝑐!"(𝑓) [V2]
'!(%) ()'"(%)[(]

#!!(%))#""(%) [,$]
𝑐!"(𝑓)[K]

• Both the autocorrelations and the system temperature measurements
are a total power-like measurement of the sky.

• If the target source is highly extended and bright, then the source can be
picked up in these total power measurements which then impacts this
normalization scheme in any channels where the emission was picked
up!

Normalization and Tsys Calibration

𝑐!"(𝑓) [V2] 𝑐!"(𝑓) [V2]
#!(%) ' (#"(%)[']

+!!(%) (+""(%) [,#]
𝑐!"(𝑓)[K]

• Both the autocorrelations and the system temperature measurements are a
total power-like measurement of the sky.

• Dividing by the autocorrelations will under-scale the cross-correlations in
any affected channels.

• Multiplying by Tsys measurement will over-scale the cross-correlations in any
affected channels.

• These effects perfectly cancel each other ONLY if they are of the same
field.

Renormalization Strategy:
Apply Renormalization Spectrum

Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Data Inspection, Flagging and
End to End processing

ALMA Data Reduction Tutorials

Synthesis Imaging Summer School

Initial Inspection Tools
• listobs: list contents of a MS
• plotant: plot antenna positions

Inspect Your Data and Results
• plotms: inspect/flag your data interactively and

examine a calibration table
• listcal: list calibration table data

Flagging
• flagdata: flag (remove) bad data
• flagcmd: batch flagging using lists/tables
• flagmanager: storage/retrieval of flagging state

Key Tasks for Data Inspection/Editing

Data Inspection and Flagging
• This next step goes through the basics of data inspection and

flagging.
• Throughout the calibration process you will want to create a

series of diagnostic plots and use these to identify and
remove problematic data. This lesson steps through common
steps in identifying and flagging problematic data.

• In the next lesson, we will see how this interplays with
calibration in a typical iterative workflow.

• We will now use plotms to make a series of diagnostic plots.
These plots have been picked because we have a good
expectation of what the calibrators (fields 0, 1, and 2 here)
should look like in each space. Before that however, let’s
walk through the plotms GUI to familiarize ourselves with the
interface.

Flagging: Locating Bad Data - plotms

111

Draw a box around the
suspected bad data.

Flagging: Locating Bad Data - plotms

112

Click locate and CASA
will send information
about the data to the
logger.

Flagging: Locating Bad Data - plotms

113

Bad data can be
flagged by pressing
this button or using the
flagdata task at the
CASA prompt.

Flagging: Locating Bad Data - plotms

114

Flagger’s remorse can
be corrected by
unflagging good data

Flagging:
What to Look For

115

• Plots of amplitude and phase vs. time and frequency (gain
solutions, visibilities)

• Iterate over
– Antenna
– Spectral window
– Source

• Make plots of calibrators first
– Easier to find problems in observations of bright point source
– Harder to find problems in observations of a faint and

extended source

Flagging:
Example of an Obvious Issue

116

Tsys plots (cal table)
NGC 3256 ALMA CASA Guide

Flag the target data for the affected periods (yellow)

Flagging:
What to Look For

117

• Smoothly varying phases and amplitudes can be calibrated
• Discontinuities can not be calibrated
• Features in the calibrators that may not be in the target data can

cause problems

Flagging:
What to Look For

118

From TW Hydra ALMA Guide
Color: Polarization
One spectral window (spw) plotted

Flagging:
What to Look For

119

From TW Hydra CASA Guide
Brown and Green show phase
calibrators

Amplitude vs. Frequency - Birdies

Flagging:
What to Look For

120

Amplitude vs. Channel Amplitude vs. Channel

Edge Channels

Flagging:
What to Look For

121
ALMA Data Workshop – February 28, 2013

From TW Hydra Band 7 Guide
Spectral line in Titan (Flux Calibrator)

Flagging: What to Look For
Phase vs. Time on Gain Calibrator

122

First observation of data

Later observations of data

From Antennae ALMA CASA Guide
Gain calibrator observations on one antenna

Flag target data in the region
where the solution is

changing
rapidly/discontinuously

Sage Advice

123

From Rick Perley:
“When in doubt, throw it out.”

Inspect your Data

In general, we will look through these plots one at a time and
look for data that appears as outliers. Use the "locate" function,
manipulate the plotted axes, and change the data selection and
averaging to try to identify the minimum way to specify the
problem data (antenna, scan, channel, etc.). Keep in mind that
issues like bad antennas are usually identified using calibrators
but are flagged for both calibrators and for the science target.

We will walk you through a few suggested ways of viewing your
data for inspection and then give you time to explore on your
own. Start with plots of amplitude and phase vs. uv distance. For
point sources we expect flat amplitude and zero phases for
these plots.

Inspection: Amplitude vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist",

yaxis="amp", ydatacolumn="corrected", field="0,2,3",
averagedata=True, avgchannel="1e3", avgtime="1e3",
iteraxis="field", coloraxis="corr")

Inspection: Amplitude vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist",

yaxis="amp", ydatacolumn="corrected", field="0,2,3",
averagedata=True, avgchannel="1e3", avgtime="1e3",
iteraxis="field", coloraxis="corr")

Inspect this plot for
each source by
hitting the right

green arrow

Are these outlying
points part of the

structure of
SDP.81? Or do they
need to be flagged?
Let’s investigate …

Colorize instead by
spectra window (under

Display tab at left):
All outlying points are
from the same (brown)

spectral window

To confirm all outlying
points are from the same
spw (and to determine

which spw) we:
1) Box them using the
button to add a box
2) Click the “locate”

button to print their info
to the logger

Inspection: Example output from locate
tool in plotms

Now colorize instead
by antenna2 (under
Display tab at left):

All outlying points are
again from the same

(brown) antenna

Inspection: Determining what data to flag

Given the often weaker flux of a science target, it is often difficult
to discern features that could be representative of real source
structure from problematic data that needs flagging.

In the case of the outlying points in the plots we have inspected
for SDP.81, they are all from the same antenna and the same
spectral window. This is highly unlikely to be source structure
and so can should flagged.

Inspection: Phase vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist", yaxis=“phase",

ydatacolumn="corrected", field="0,2,3”, avgdata=True,
avgchannel="1e3", avgtime="1e3", iteraxis="field", coloraxis="corr")

Click the green arrow to
make this plot for each

source

Inspection: Scan-to-Scan Variations in Amplitude
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”time",

yaxis=“amp", ydatacolumn="corrected", field="0,2,3”,
avgdata=True, avgchannel="1e3", avgtime="1e3", coloraxis=”field")

Data looks well-behaved except
possibly for the outlying points sitting
at slightly higher amplitudes for our

source.

Now colorize by antenna. Again the box and
locate tools help us see that all outlying points

appear to be from the same (blue) antenna so we
will flag it.

Inspection: Scan-to-Scan Variations in Phase
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”time",

yaxis=“phase", ydatacolumn="corrected", field="0,2,3”,
avgdata=True, avgchannel="1e3", avgtime="1e3", coloraxis=”field")

We are looking for scans
with significantly more
dispersion than others (i.e.
times when the weather was
worse) but we don’t see any
issues.

Lines or Spikes

Finally, we don't expect strong lines in the calibrators and sharp
unexpected spikes anywhere are likely to be spurious. We will
likely want to flag any lines or spikes. Plot the amplitude and
phase as function of channel for the calibrators and the source.

First we will plot our three spectral windows with wide channels
(128 channels with 15625 kHz each; i.e. those set for continuum
– see listobs output).

Then we will plot our final spectra window set with narrower
channels (3840 channels with 488 kHz each).

Inspection: Spectral Windows with Wide Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel",

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”,
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”spw”,
iteraxis=“field”, spw=“0,1,2”, avgantenna=True)

We inspect the three spws (0,1, & 2) with wide (15625 kHz) channels to
look for lines or spikes. We don’t note any issues (i.e. spikes).

Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel",

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”,
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”,
iteraxis=“field”, spw=“3”, avgantenna=True)

We note a spike in our
bandpass calibrator

We inspect the spw 3 with narrow
(488 kHz) channels to look for lines
or spikes.

Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel",

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”,
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”,
iteraxis=“field”, spw=“3”, avgantenna=True)

We note the same spike
in our phase calibrator

We inspect the spw 3 with narrow
(488 kHz) channels to look for lines
or spikes.

Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel",

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”,
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”,
iteraxis=“field”, spw=“3”, avgantenna=True)

We inspect the spw 3 with narrow
(488 kHz) channels to look for lines
or spikes. We note the same spike

in our source.

Flag the spike we see in all of our targets.
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel",

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”,
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”,
iteraxis=“field”, spw=“3”, avgbaseline=True)

Averaging over short baselines makes this feature easier to discern

Note: We already know where this feature
comes from!

Looking back at our Tsys
plots (made when applying
initial corrections to the
data), we see a dip in the
atmospheric transmission
which highlights an
absorption feature in the
atmosphere at that
frequency. This coincides
with a peak in Tsys and
with the spike in our data.

Define your Data Flags
Now take some time to inspect the data yourself and look for any
additional issues that may need flagging. We have noted some
recommendations at the end of the calibration.py script.

Once you have identified the data you want to flag, enter those
flagging commands at the earlier (marked) point in the calibration.py
script before Bandpass Calibration but after Getting Oriented and
Initial Flagging.

An example: (flagging problematic antenna in spw 2)
flagdata(vis=“SDP81_B4_uncalibrated.ms.split”,

mode=“manual”,

spw=“2”,

antenna=“PM04”

flagbackup=False)

Redo calibration after flagging

• If you have flagged calibrator data, you must re-run through the
entirety of the calibration after flagging. By flagging problematic
data, we improve all of our solutions for our bandpass, gain, etc.

• Place any data flag commands in the flagging section in the
calibration.py script before the bandpass calibration is run

• Then execute the script in its entirety (aka “end-to-end”).
– either by entering each command at the casa prompt as we

have been doing or by executing the script as a whole via:

• In the interest of time, we won’t re-run the script today, and
instead will move on to the imaging section

execfile("calibration.py”)

A look at the final calibrated data

Final Steps
Several iterations of inspection, defining flags, and re-calibration
can be performed. Typically after one is satisfied by the
calibrated data quality, it is recommended to split out the
corrected column of the data to a new measurement set. We will
not do it in this tutorial in the interest of saving space. For
future reference, this is how splitting out the correct column can
be done:

To free space on your machine, please remove
SDP81_B4_uncalibrated.ms.split from your Calibration directory
when you are done with the calibration.

split(vis=“SDP81_B4_uncalibrated.ms.split”,

outputvis=“SDP81_B4_calibrated.ms.split”,

datacolumn=“corrected”,

keepflags=True)

os.system(“rm –fr SDP81_B4_uncalibrated.ms.split”)

Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Basic Imaging

ALMA Data Reduction Tutorials

Synthesis Imaging Summer School

Introduction to deconvolution in CASA (clean)
Introduction to various imaging methods available in CASA

How to analyze (imperfect) interferometer data?

• image plane analysis
– dirty image TD(x,y) = Fourier transform { V(u,v) }
– deconvolve b(x,y) from TD(x,y) to determine (model of) T(x,y)

visibilities dirty image sky brightness

deco
nvo

lve

Fourier tr
ansfo

rm

154

Basic CLEAN Algorithm
① Initialize a residual map to the dirty map

1. Start loop
2. Identify strongest feature in residual

map as a point source
3. Add this point source to the clean

component list
4. Convolve the point source with b(x,y)

and subtract a fraction g (the loop
gain) of that from residual map

5. If stopping criteria not reached, do
next iteration

② Convolve Clean component (cc) list by an
estimate of the main lobe of the dirty beam
(the “Clean beam”) and add residual map
to make the final “restored” image

b(x,y)

TD(x,y)

155

Basic CLEAN Algorithm (cont)

• stopping criteria
– residual map max < multiple of rms (when noise limited)
– residual map max < fraction of dirty map max (dynamic range limited)
– max number of clean components reached (no justification)

• loop gain
– good results for g ~ 0.1 to 0.3
– lower values can work better for smoother emission, g ~ 0.05

• easy to include a priori information about where to
search for clean components (“clean boxes”)

A few notes on clean boxes
• Because we do not fully sample the uv-plane in our imaging, there is

generally no unique solution to the deconvolution process
• We use clean ‘boxes’, or masks, to identify regions of the image or

cube with real emission
• Clean boxes are a way to create the best possible model for your

source – particularly sources with complex emission
• As a first step, include bright features in your mask, drawing a close

contour around the emission
• For cubes, you can mask channel-by-channel, or all channels
• As tclean progresses, strong residuals that do not appear to be due

to sidelobes (i.e., do not disappear in subsequent cycles) can be
added iteratively

• Be careful when masking – adding a mask around noise or beam
sidelobes can create features in your final image that are not real

156

Automasking (auto-multithresh) in tclean
• Algorithm developed by A. Kepley,

T. Tsutsumi (+Yoon, Indebetouw, Brogan)

– parameterized in terms of fundamental
image parameters (S/N, fraction of
beam, sidelobe level) ⇒ instrument
independent

– Masks are re-calculated every major
cycle within tclean ⇒ follows evolution
of image

• Available in tclean since CASA 5.1
– usemask=‘auto-multithresh’

• Deployed in ALMA Cycle 5 pipeline
• CASA guide:

https://casaguides.nrao.edu/index.php?title=
Automasking_Guide

https://casaguides.nrao.edu/index.php?title=Automasking_Guide
https://casaguides.nrao.edu/index.php?title=Automasking_Guide

Dirty Beam Shape and Weighting
Each visibility point is given a weight in the imaging step

• Natural
– Weights inversely proportional to noise variance
– Best point-source sensitivity; poor beam characteristics

• Uniform
– Weights inversely proportional to noise variance and sampling

density (longer baseline are given higher weight than in natural)
– Best resolution; poorer noise characteristics

• Briggs (Robust)
– A graduated scheme using the parameter robust
– In CASA, set robust from -2 (~ uniform) to +2 (~ natural)
– robust = 0 often a good choice

Imaging Results

159

Natural Weight Beam CLEAN image

Imaging Results

160

Uniform Weight Beam CLEAN image

Imaging Results

161

Robust=0 Beam CLEAN image

tclean in CASA:

162

Basic Image Parameters: Pixel Size and Image Size

• pixel size
– should satisfy Dx < 1/(2 umax) Dy < 1/(2 vmax)
– in practice, 3 to 5 pixels across the main lobe of the dirty beam

• image size
– Consider FWHM of primary beam (e.g. ~ 20” at Band 7)
– Be aware that sensitivity is not uniform across the primary beam
– Use mosaicing to image larger targets
– Not restricted to powers of 2

* if there are bright sources in the sidelobes, they will be aliased into the
image (need to make a larger image)

Largest Angular Scale

164

Band Frequency
(GHz)

Primary
beam (“)

Range of Scales (“)
C32-1 C32-9

3 84-116 72 - 52 4.2 - 24.6 0.7 - 15.1
6 211-275 29 - 22 1.8 - 10.7 0.3 - 6.6
7 275-373 22 - 16 1.2 - 7.1 0.2 - 4.4
9 602-720 10 – 8.5 0.6 - 3.6 0.1 - 2.2

• Range from synthesized beam to maximum angular scale (MAS)
• Smooth structures larger than LAS begin to be resolved out.
• All flux on scales larger than l/Bmin (~2 x MAS) completely resolved out.

Since 12 executions of the SDP.81 observations were made, ordinarily
the next steps would be to repeat the calibration steps we just
performed for one execution for the remaining eleven. In the interest of
time, we have already done this and combined the 12 executions for you.
In your Imaging directory you should have:

SDP.81_Band4.ms

We will now work through the steps noted in the imaging script
provided (imaging.py).

Orient yourself with the calibrated measurement set:

Basic Imaging

165

listobs(“SDP.81_Band4.ms”)

166

Check your Fourier Plane Coverage
plotms(vis=’SDP.81_Band4.ms', xaxis='u', yaxis='v',

avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False,
coloraxis=“observation")

Note: Each of the
12 observations

(colors) fills out a
different portion
of the uv plane.

Check your Fourier Plane Coverage

Colorize by
baseline using the

options under
the Display tab.

Check your Fourier Plane Coverage

This zoom on the previous
plot shows the uv tracks

traced out by the
observations. Being able to
observe for a full 24 hours
would complete the circle.

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Imaging the Bandpass Calibrator

Just for illustrative purposes, let’s start by imaging a bright, point-like
source like our bandpass calibrator.

Image the Bandpass Calibrator: Natural

os.system(“rm –rf bandpass_natural.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_natural”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’,gridder=‘standard’,

imsize=[512,512], cell=[“0.005arcsec”],

weighting=“natural”, threshold=“0mJy”,

niter=10000, interactive=True)

Running tclean will bring up the following interactive window …

Image the Bandpass Calibrator: Natural

This is the dirty image
of our calibrator.

Image the Bandpass Calibrator: Natural

Define a mask around
the emission (similar to
the one shown here)
using the region buttons
above.

Image the Bandpass Calibrator: Natural

This is a plot of
the residuals.

Image the Bandpass Calibrator: Natural
imview(“bandpass_natural.image”)View the resulting clean image:

Different weighting
schemes result in
different synthesized
beam size and often
sensitivity. Note how the
resulting image changes
with the use of different
weighting schemes
(uniform, natural or
briggs), and for Briggs
weighting, the use of
different robust
parameters.

os.system(“rm –rf bandpass_robust.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_robust”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’, gridder=‘standard’,

imsize=[512,512], cell=[“0.005arcsec”],

weighting=“briggs”, robust=0.0,

threshold=“0mJy”,

niter=10000, interactive=True)

Now image the bandpass calibrator using a Briggs weighting scheme:

Image the Bandpass Calibrator: Briggs

Running tclean will bring up the following interactive window …

Image the Bandpass Calibrator: Briggs

This is the dirty image
of our calibrator.

Image the Bandpass Calibrator: Briggs

Define a mask around
the emission (similar to
the one shown here)
using the region buttons
above.

Image the Bandpass Calibrator: Briggs

This is a plot of the
residuals.

Image the Bandpass Calibrator: Briggs
View the resulting clean image: imview(“bandpass_robust.image”)

What happens when we image the bandpass calibrator using a larger
pixel size?
os.system(“rm –rf bandpass_bigpix.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_bigpix”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’, gridder=‘standard’,

imsize=[128,128], cell=[“0.05arcsec”],

weighting=“briggs”, robust=-1,

threshold=“0mJy”,

niter=10000, interactive=True)

Image the Bandpass Calibrator: Large Pixels

Running tclean will bring up the following interactive window …

Image the Bandpass Calibrator: Large Pixels

This is the dirty image
of our calibrator.

Image the Bandpass Calibrator: Large Pixels

Image the Bandpass Calibrator: Large Pixels

This is a plot of the
residuals.

Image the Bandpass Calibrator: Large Pixels
View the resulting clean image: imview(“bandpass_bigpix.image”)

Image the Bandpass Calibrator: Comparison
Image of bandpass calibrator cleaned with robust weighting scheme

Small Pixels Large Pixels

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Imaging the SDP.81 Continuum

Image the SDP.81 Continuum

os.system(“rm –rf SDP.81.continuum_multiscale.*”)

tclean(vis=“SDP.81.Band4_continuum.ms”,

imagename=“SDP.81.continuum_multiscale”,

spw=“”, field=“SDP*”,

specmode=“mfs”, gridder=“standard”, deconvolver=“multiscale”,

imsize=1500, cell=“0.01arcsec”,

scales=[0,5,15,45],

interactive=True, mask=“”,

weighting=“briggs”, robust=1.0,

niter=10000, threshold=“0.02mJy”)

We will image the continuum emission in SDP.81 using a multiscale clean.
For more information on multiscale cleaning, see the
information/references in your imaging.py script.

Running tclean will bring up the following interactive window …

Image the SDP.81 Continuum

Define a mask around
the emission (similar to
the one shown here)
using the region buttons
above.

Image the SDP.81 Continuum
imview(“SDP.81.continuum_multiscale.image”)View the resulting clean image:

Note how the
resulting image
changes with
different
selections of the
robust and
weighting
parameters.

Output of tclean

190

• SDP.81.continuum_multiscale.pb

• SDP.81.continuum_multiscale.image

• SDP.81.continuum_multiscale.mask

• SDP.81.continuum_multiscale.model

• SDP.81.continuum_multiscale.psf

• SDP.81.continuum_multiscale.residual

Relative sky sensitivity - shows the primary beam response

Cleaned and restored image

Clean “boxes” shows where you cleaned

Clean components - the model used by clean (in Jy/pixel)

Dirty beam - shows the synthesized beam

Residual shows what was left after you cleaned
(the "dirty" part of the final image)

Minimally:

Since some emission is still resolved out at this angular resolution, we
can image the target while tapering the uv data at long baselines to
emphasize and recover more of the extended emission.

Image the SDP.81 Continuum

os.system(“rm –rf SDP.81.continuum_smooth.*”)

tclean(vis=“SDP.81.Band4_continuum.ms”,

imagename=“SDP.81.continuum_smooth”,

spw=“”, field=“SDP*”,

specmode=“mfs”, gridder=“standard”, deconvolver=“multiscale”,

imsize=1500, cell=“0.01arcsec”,

scales=[0,5,15,45],

interactive=True, mask=“”,

weighting=“briggs”, robust=1.0,

uvtaper=[“1000klambda”],

niter=10000, threshold=“0.025mJy”)

Running tclean will bring up the following interactive window …

Image the SDP.81 Continuum

Define a mask around the
emission (similar to the
one shown here) using
the region buttons above.

Image the SDP.81 Continuum
imview(“SDP.81.continuum_smooth.image”)View the resulting clean image:

View the resulting clean image as a contour plot:

Image the SDP.81 Continuum

imview ({'file':'SDP.81.continuum_smooth.image’,'levels':[0.2,0.4,0.6,
0.8],'unit':0.0002'})

Adjust contour
levels using
Data Adjust
Data Display
under
Basic Settings

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Imaging the SDP.81 CO Line

The spectral line we will image is CO(5-4) at z = 3.042 (redshifted to
142.57 GHz). To do this, we need to subtract the continuum and split off
the line data.
Here, this step has been done for you, as it can take a while.

Image the SDP.81 CO Line

spw_cont =
'0~2,4~6,8~10,12~14,16~18,20~22,24~26,28~30,32~34,36~38,40~42,44~46’

spw_line = '3,7,11,15,19,23,27,31,35,39,43,47’

os.system('rm –rf SDP.81_Band4_COline.ms')
split(vis='SDP.81_Band4.ms',outputvis='SDP.81_Band4_COline.ms',
spw=spw_line,datacolumn='data')

Split the spectral line data into a separate measurement set:

The spectral windows containing continuum vs line emission are:

Perform the continuum subtraction:
os.system(“rm –rf SDP.81_Band4_COline.ms.contsub”)
uvcontsub(vis=“SDP.81_Band4_COline.ms”, fitorder=1,

fitspw=“0~11:5~45:170~187”)

Image the SDP.81 CO Line

Image the CO line emission in SDP.81:

Running tclean will bring up the following interactive window …

os.system(“rm –rf SDP.81.CO_smooth.*”)
tclean(vis=“SDP.81.Band4_COline.ms.contsub”,

imagename=“SDP.81.CO_smooth”,
mask=“”,
specmode=“cube”, gridder=“standard”,
deconvolver=“multiscale”,
imsize=672, cell=“0.02arcsec”,
start=“-520km/s”,width=“21km/s”,nchan=45,
outframe=“LSRK”,restfreq=“142.5700GHz”,
scales=[0,5,15,45],
interactive=True,
restoringbeam=“common”,
weighting=“briggsbwtaper”, robust=1.0,
uvtaper=[“1000klambda”],
perchanweightdensity=True,
niter=10000, threshold=“0.52mJy”)

Image the SDP.81 CO Line

Moving through
channels using the
arrows shows which
channels have CO line
emission in them
(which we will want to
mask.).

Channel with no
CO emission

Image the SDP.81 CO Line

Channel with
CO emission

Image the SDP.81 CO Line

Channel with
CO emission

CO emission is
detected between
+200 to -400 km/s, so
we only need to define
a cleaning box around
the emission at those
channels.

Image the SDP.81 CO Line

Image the SDP.81 CO Line
imview(“SDP.81.Band4.CO_smooth.image”)View the resulting clean image:

Find the SDP.81 CO Line integrated intensity
imview(“SDP.81.Band4.CO_smooth.mom0_2sigma.image”)And view:

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

And you’re done!

You have calibrated one execution of a Band 4
observation of the gravitationally lensed galaxy
SDP.81 and imaged the galaxy’s continuum and CO
line emission.

Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Extra slides

206

Expandable Parameters
• Boldface parameters have subparameters that unfold when

main parameter is set

Image the SDP.81 CO Line
plotms(“SDP.81_Band4_Coline.ms”,yaxis=“amp”,xaxis=“channel”,

avgtime=“1e8”,coloraxis=“spw”,restfreq=“142.5700GHz”,
freqframe=“LSRK”,transform=True,avgantenna=True,avgscan=True)

