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• CASA is the offline data reduction package for ALMA and the VLA (data 
from other telescopes usually work, too, but not primary goal of CASA)

• Code is C++ (fast) bound to Python (easy access and scripting) (plus 
some Qt or other apps)

• Import/export data, inspect, edit, calibrate, image, view, analyze

• Also supports single dish data reduction 
• CASA has many tasks and a LOT of tool methods

• Easy to write scripts and tasks
• We have a lot of documentation, reduction tutorials, helpdesk, user 

forum 

• CASA has some of the most sophisticated algorithms implemented 
(multi-scale clean, Taylor term expansion for wide bandwidths, W-term 
projection, OTF mosaicing, etc.)

• We have a active Algorithm Research Group, so expect more features in 
future versions… 

CASA (Common Astronomy Software Applications)
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CASA Startup
$ casa (or casa –r version, e.g. casa –r 6.4.1 if you have 

multiple casa versions installed)
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CASA Interactive Interface
• CASA runs within pythons scripts or through the interactive

IPython (ipython.org) interface
• IPython Features:

– shell access
– auto-parenthesis (autocall)

– Tab auto-completion

– command history (arrow up and “hist [-n]”)
– session logging 

• casaTIME.log – casa logger messages
– numbered input/output

– history/searching
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Basic Python tips

• CASA uses python 3
• to run a python “.py” script:

execfile(‘<scriptname>’, globals())

example:  execfile(‘ngc5921_demo.py’, globals())

Some python specialties:

• python counts from 0 to n-1!

• variables are global when using task interface

• tasknames are objects (not variables)
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Basic Python tips

Cutting and pasting in CASA:

• indentation matters!

– indentation in python is for loops, conditions etc. 

– be careful when doing cut-and-paste to python

– cut a few (4-6) lines at a time

• for longer commands and loops:
– use %cpaste and --

CASA <1>: %cpaste

Long list of CASA commands

--
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Tasks and tools in CASA
• Tasks - high-level functionality

– function call or parameter handling interface

– these are what you should use in tutorials
• Tools - complete functionality

– tool.method() calls, they are internally used by tasks or can be 
used on their own

– sometimes shown in tutorial scripts and CASAGuides

• Applications – some tasks/tools invoke standalone apps

– e.g. casaviewer, mpicasa
• Shell commands can be run with a leading exclamation mark     !du –ls 

or inside os.system(“shell command”) 

(some key shell commands like “ls” work without the exclamation    
mark and we will use os.system() exclusively within this tutorial.) 



Find the right Task

To see list of tasks with
short help: 

taskhelp
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Task Interface

Examine task 
parameters with inp
tclean : 
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Task Interface
• standard tasking interface, similar to AIPS, MIRIAD, etc.

• parameter manipulation commands
• inp, default, saveinputs, tget, tput

• use parameters set as global Python variables

<param> = <value> 

(e.g. vis = ‘ngc5921.demo.ms’ )
• execute

<taskname> or go ( e.g. tclean() )

• return values (except when using “go”)
• some tasks return Python dictionaries, assign a variable name to 

get them, e.g. myval=imval()   

• Very useful for scripting based on task outputs
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Expandable Parameters
• Boldface parameters have subparameters that unfold when 

main parameter is set 
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Parameter Checking

sanity checks of parameters in inp :

erroneous
values in red
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Help on Tasks
CASAdocs: https://casadocs.readthedocs.io/en/stable/

https://casa.nrao.edu/casadocs/
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Help on Tasks
Documentation inside CASA:
doc “tclean”
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Task Execution
• In addition to typing in all variables in the task interface and executing 

with go one can write the full parameter set in a line:
taskname( arg1=val1, arg2=val2, ... )

e.g.
tclean(vis=‘input.ms’,imagename=‘galaxy’,
robust=0.5, imsize=[200,200])

– unspecified parameters will be set to their default values (globals
not used; i.e. not to previously set variables)

– Useful in scripts, but also in ‘pseudo-scripts’:
• To keep a record it is frequently a good idea to write down the 

full line as above in an editor, then cut and paste into CASA. 

• When changes are needed, change in editor and cut and paste 
again. That is good practice to keep a record of the exact input. 

• But note that the logger is also repeating the full task command



What is a Measurement Set?
• CASA stores u-v data in directories called “Measurement Sets”

TO DELETE THEM USE rmtables(“measurement_set.ms”) or
os.system(”rm –rf measurement_set.ms”)

• These data sets store two copies of the data (called “columns”):

• Additionally a “model” may be stored separately.
THIS IS USED TO CALCULATE WHAT THE TELESCOPE SHOULD HAVE OBSERVED.

• Each data point may also be “flagged,” i.e., marked bad.
IN THIS CASE IT IS IGNORED (TREATED AS MISSING) BY CASA OPERATIONS.

“Data” Column

Contains the raw, 
unprocessed 

measurements.

“Corrected” Column

Usually created by applying 
one or more calibration 

terms to the data.
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Steps to a Calibrated Dataset

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE TIME VARIABILITY

Calibrate the Amplitude and Phase vs. Time of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE FREQ. VARIABILITY

Set the Absolute Amplitude Scale With Reference to a Known Source
PLANET (MODELED), MONITORED QUASAR, ETC.

Apply all corrections to produce calibrated data

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
IMPROVES SHORT TERM VARIABILITY OF PHASE, DATA WEIGHTS AND FLUX SCALE



Applying Calibration in Practice: 
Calibration Tables
• Calibration yields estimates of phase and amplitude corrections.

E.G., AS A FUNCTION OF TELESCOPE, TIME, FREQUENCY, POLARIZATION.

• CASA stores these corrections in directories called “calibration tables.”
TO DELETE THEM USE rmtables(“my_table.gcal”) 

OR os.system(”rm –rf my_table.gcal”)

• These are created by calibration tasks:
E.G., gaincal, bandpass, gencal

• Applied via “applycal” to the data column and saved as corrected.

“Data” Column
Still holds original data

“Corrected” Column
Now holds corrected data.

(“Data” Column)

Calibration Table(s)

Measurement Set
Measurement Set

applycal
CASA Task



Define/Assume a model for the 
data (e.g., setjy)

Measurement Set

Model
(defaults to point source)

Define what the telescope SHOULD have seen.

Measurement Set
(with associated model)

Basic Flow to Create/Apply a Calibration Table



Calibration Task
(e.g., gaincal, bandpass)

Derive the corrections needed to make the data match the model.

Calibration Table
Measurement Set

(with associated model)

Basic Flow to Create/Apply a Calibration Table



Apply Calibration
applycal

Apply these corrections to derive the corrected (calibrated) data.

Measurement Set

Corrected column now 
holds calibrated data.Calibration Table

Measurement Set

Data Column

Basic Flow to Create/Apply a Calibration Table



Calibration Task
(e.g., gaincal, bandpass)

Apply Calibration
applycal

Define/assume a model for the 
data (e.g., setjy)

Measurement Set

Model
(defaults to point source)

Define what the telescope SHOULD have seen.

Derive the corrections needed to make the data match the model.

Apply these corrections to derive the corrected (calibrated) data.

Measurement Set

Corrected column now 
holds calibrated data.

Calibration Table

Calibration Table

Measurement Set

Data Column

Measurement Set
(with associated model)

Measurement Set
(with associated model)

Basic Flow to Create/Apply a Calibration Table



Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE TIME VARIABILITY

Calibrate the Amplitude and Phase vs. Time of Each Antenna
ASSUME TIME & FREQUENCY RESPONSE SEPARABLE, REMOVE FREQ. VARIABILITY

Set the Absolute Amplitude Scale With Reference to a Known Source
PLANET (MODELED), MONITORED QUASAR, ETC.

Apply all corrections to produce calibrated data

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
IMPROVES SHORT TERM VARIABILITY OF PHASE, DATA WEIGHTS AND FLUX SCALE



Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds 
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna 

Correction Tables



Our Goal Today: Calibrate and Image the data 
for the Gravitationally Lensed Galaxy SDP.81

ALMA Long Baseline Campaign
• Successful test of ALMA’s longest baselines (i.e. highest resolutions) run 

from September through December 2014
• Baselines out to 15km (resolution up to 0.023”)
The Gravitationally Lensed Galaxy SDP.81
• At z = 3.04, the star-forming galaxy SDP.81 sits behind a massive 

foreground elliptical galaxy (z = 0.299) which acts as a gravitational lens.
• During the Long Baseline Campaign, the dust continuum at 151, 236, and 

290 GHz was mapped as well as emission lines from CO and water.
• These images allow for the determination of the physical and chemical 

properties of the lensed galaxy down to 180 pc size scales (similar to giant 
molecular clouds in the Milky Way … but at a redshift of 3!)

30



Our Goal Today: Calibrate and Image the data 
for the Gravitationally Lensed Galaxy SDP.81
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Our Goal Today: Calibrate and Image the data 
for the Gravitationally Lensed Galaxy SDP.81
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Blue: HST/WFC3 F160W data 
shows lensing galaxy at z~0.3
Red: ALMA Band 6 emission.

We will image the dust continuum emission and 
CO line emission observed at Band 4.

Combined 3 color image of dust 
continuum from 3 ALMA Bands

Red: Highest Resolution (Band 7) 
ALMA Dust Continuum

Link to paper: http://arxiv.org/abs/1503.02652

Image Credits: ALMA 
(NRAO/ESO/NAOJ); 
B. Saxton NRAO/AUI/NSF; 
NASA/ESA Hubble, 
T. Hunter (NRAO)
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An Overview of your Directory
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In your home directory there should be two sub-directories labeled /Calibration and 
/Imaging. 
In /Calibration you should have:

- SDP81_B4_uncalibrated.ms.split (the data file containing uncalibrated data   
with minor initial processing applied)

- data_prep.py (script detailing the initial processing that has already been 
applied)

- calibration.py (the script we will work through together to calibrate the data)

In /Imaging you have:
- SDP.81_Band4_continuum.ms (fully calibrated continuum measurement set ready

for imaging)
- SDP.81_Band4.ms (fully calibrated measurement set containing both continuum 

and line emission ready for imaging)
- SDP.81_Band4_COline.ms.contsub (fully calibrated line-only measurement set)
- imaging.py (the script we will work through together to image the data)
- combination.py (a script detailing the steps taken to create the measurement sets         

ready for imaging: this is just for reference we won’t be using it!)



An Overview of your Directory
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To begin, if you haven’t already done so … start casa:

casa

os.system(“ls")

!ls

Be sure you have run all of the commands in Startup

The dataset we will be working with is large, so there is likely not enough memory 
to save the data at various steps throughout the reduction process. Should your 
dataset get corrupted, you can untar SDP81_B4_uncalibrated.ms.split.tgz.

Note that you can run system commands from within casa via:



When you start casa …



Initial Data Preparation
Downloading data from the ALMA archive will return raw data along with the 
scripts necessary for calibrating the data. In the interest of time, we have 
already applied some initial corrections to the raw data for you. All of these 
steps are detailed in 

Here we will briefly explain the steps taken in data_prep.py
• Import the raw data into a casa measurement set.
• Occasionally a dataset will require a fix to some of the metadata (i.e. the 

header). In this case, some coordinates in the metadata are adjusted. 
• Data that is known to be irrelevant to calibration or to be problematic 

(even without inspection of the data) is flagged. Examples: data taken when 
the telescope was not on source yet, when the system temperature load 
was too close to the beam, when the receivers were not yet tuned)

• Create 3 correction tables (WVR, Tsys, antenna positions) and apply them.
• The output of data_prep.py is SDP81_B4_uncalibrated.ms.split

(we will start calibration with this data file)

37

data_prep.py



ALMA Online Corrections
• Water Vapor Radiometer (WVR) – phase delay due to atmosphere

o Key to correct short-timescale phase variations
o Phase calibration, variable with time

• System Temperature (Tsys) – atmospheric emission/opacity
o Key to gain transfer across elevation
o Amplitude calibration, variable with frequency (observed in “TDM”)
o System temperatures of order ~100 K at Band 3 to ~1000 K at Band 9

• Antenna Positions – updates in accuracy of antenna positions 

These corrections are provided by the observatory for each dataset.
The datasets associated with this tutorial already have these corrections applied 

and the steps are detailed in data_prep.py only for reference.



ALMA Online Corrections:  Tsys
SDP.81



ALMA Online Corrections:  Tsys
High Frequency Example: TW Hydra 
(note much higher system temperatures)



ALMA Online Corrections: WVR
SDP.81



ALMA Online Corrections: WVR

Phase vs. Time
One 600m Baseline

~600 GHz
Before WVR,  After WVR

High Frequency Example: TW Hydra



ALMA Online Corrections: 
Antenna Positions
SDP.81: These are the offsets determined for our dataset.  

# antenna x_offset y_offset z_offset total_offset baseline_date
# DV14 -4.61575e-04 7.57190e-04 1.74002e-03 1.95296e-03 2014-10-31 11:27:40 
# DA50 4.24031e-05 -4.98282e-04 1.51997e-03 1.60012e-03 2014-10-31 11:27:40 
# DV22 -9.64679e-04 1.07473e-03 3.88599e-04 1.49554e-03 2014-10-31 11:27:40 
# DV08 5.53798e-04 -1.32566e-03 2.52869e-04 1.45877e-03 2014-10-31 11:27:40 
# DA64 -2.80747e-04 2.60536e-04 1.39146e-03 1.44321e-03 2014-10-31 11:27:40 
# DA54 7.92693e-04 -1.16213e-03 -4.01242e-05 1.40731e-03 2014-10-31 11:27:40 
# DA62 1.95323e-04 -4.82360e-06 1.32798e-03 1.34227e-03 2014-10-31 11:27:40 
# DV17 1.09515e-04 -3.07546e-04 1.20603e-03 1.24944e-03 2014-10-31 11:27:40 
# DV04 3.70800e-04 -4.36427e-04 4.07359e-04 7.02782e-04 2014-10-31 11:27:40 
# DA41 5.09151e-04 -3.88547e-04 1.20386e-04 6.51687e-04 2014-10-31 11:27:40 

Note: these offsets are in units of meters!!



Getting Oriented
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Run the listobs task (output sent to casalogger)

listobs(”SDP81_B4_uncalibrated.ms.split")
================================================================================           
MeasurementSet Name:  SDP81_B4_uncalibrated.ms.split      MS Version 
================================================================================   
Timerange (UTC) Scan FldId FieldName nRows SpwIds Average Interval(s)      ScanIntent
09:33:43.0 - 09:33:58.5     2      0 J0825+0309 23400      [0,1,2]      [0.48, 0.48, 0.48]        [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]              
09:34:19.2 - 09:39:35.9     3      0      J0825+0309   195000   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [CALIBRATE_BANDPASS,CALIBRATE_WVR]              
09:39:53.7 - 09:40:09.3     4      1      J0854+2006     23400     [0,1,2]       [0.48, 0.48, 0.48]       [CALIBRATE_ATMOSPHERE, CALIBRATE_WVR]              
09:40:24.8 - 09:43:02.6     5      1      J0854+2006     97500   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [CALIBRATE_AMP,CALIBRATE_FLUX,CALIBRATE_WVR]              

09:43:20.9 - 09:43:36.5     6      2      J0909+0121     23400      [0,1,2]      [0.48, 0.48, 0.48]       [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]              
09:43:54.3 - 09:44:04.4     7      2      J0909+0121       6500   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [CALIBRATE_PHASE,CALIBRATE_WVR]              
09:44:20.0 - 09:44:35.5     8      3      SDP.81             23400     [0,1,2]       [0.48, 0.48, 0.48]       [CALIBRATE_ATMOSPHERE,CALIBRATE_WVR]              
09:45:08.1 - 09:46:12.1     9      3      SDP.81             39000   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [OBSERVE_TARGET#ON_SOURCE]              
09:46:14.1 - 09:46:24.2    10     2      J0909+0121       6500    [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]   [CALIBRATE_PHASE,CALIBRATE_WVR]              
09:46:25.7 - 09:47:29.8    11     3      SDP.81             39000   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [OBSERVE_TARGET#ON_SOURCE]              
09:47:31.8 - 09:47:41.9    12     2      J0909+0121       6500    [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]   [CALIBRATE_PHASE,CALIBRATE_WVR]              
09:47:43.4 - 09:48:47.4    13     3      SDP.81             39000   [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [OBSERVE_TARGET#ON_SOURCE]              
09:48:49.4 - 09:48:59.5    14     2      J0909+0121        6500  [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [CALIBRATE_PHASE,CALIBRATE_WVR]              
09:49:01.1 - 09:50:05.1    15     3      SDP.81              39000  [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]   [OBSERVE_TARGET#ON_SOURCE]              
09:50:07.1 - 09:50:17.2    16     2      J0909+0121        6500  [0,1,2,3]  [2.02, 2.02, 2.02, 2.02]    [CALIBRATE_PHASE,CALIBRATE_WVR]



Getting Oriented
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Run the listobs task

listobs(”SDP81_B4_uncalibrated.ms.split")

================================================================================           
MeasurementSet Name:  SDP81_B4_uncalibrated.ms.split      MS Version 
================================================================================   
Fields: 4  
ID Code Name RA Decl Epoch SrcId nRows
0    none J0825+0309 08:25:50.338355 +03.09.24.52006   J2000   0         218400  
1 none J0854+2006 08:54:48.874929 +20.06.30.64088   J2000 1         120900  
2 none J0909+0121 09:09:10.091592 +01.21.35.61768   J2000   2         318500 
3         none SDP.81    09:03:11.610000 +00.39.06.70000   J2000   3        1287000
Spectral Windows:  (4 unique spectral windows and 1 unique polarization setups)  
SpwID Name #Chans     Frame Ch0(MHz) ChanWid(kHz)      TotBW(kHz) CtrFreq(MHz) Num Corrs    
0 ALMA_RB_04#BB_2      64        TOPO  145550.922    -31250.000   2000000.0 144566.5468        2  XX  YY  
1 ALMA_RB_04#BB_3      64        TOPO  153727.218     31250.000            2000000.0 154711.5928        3  XX  YY  
2 ALMA_RB_04#BB_4      64        TOPO  155459.988     31250.000            2000000.0 156444.3626        4  XX  YY  
3 ALMA_RB_04#BB_1   1920       TOPO  143586.559      -976.562             1875000.0 142649.5468        1  XX  YY



Getting Oriented
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Run the plotants task

plotants(”SDP81_B4_uncalibrated.ms.split", 
figfile="plotants.png")



plotms

A general-purpose graphical interface for plotting and 
flagging UV data and calibration tables

Can be started in the usual casapy interface:
inp plotms

Can be fully specified in the CASA command line (e.g.):
plotms(vis=“SDP81_B4_uncalibrated.ms.split", 

xaxis="time", yaxis="amp", ydatacolumn=”data",
field="0,1,2", averagedata=True, avgchannel="1e3",
avgtime="1e3", coloraxis="field")



Getting Oriented
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inp plotms



Getting Oriented

49

plotms(vis=“SDP81_B4_uncalibrated.ms.split", 
xaxis="time", yaxis="amp", averagedata=True,         
avgchannel="1e3", coloraxis="field")
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Top Tabs

Graphics Panel

Control Panel
Tools Panel

Si
de

 T
ab

s
Data Review: plotms
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Data Review: plotms

Control panel: Data

The modification of certain parameters 
may not be applied if ‘Plot’ is clicked 
and ‘force reload’ is unchecked.
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Data Review: plotms

Control panel:  Axes

Drop down menus to select x and y axes: 
time, channel, frequency, velocity, 
amplitude, phase, uvdist, elevation, etc.



Data Review: plotms

Scan
Field
Spw
Baseline
Antenna

Iteration

Tool panel

53
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Data Review: plotms

Display

Colorize by:
Scan
Field
Spw
Antenna1
Antenna2
Baseline
Channel
Correlation



Data Review: plotms

Transformations

Frame: TOPO, GEO, BARY, LSRK, LSRD, etc..

55



Getting Oriented
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plotms(vis=”SDP81_B4_uncalibrated.ms.split", 
xaxis=”u", yaxis=“v", averagedata=True,         
avgchannel="1e3", coloraxis="field")

‘u’ and ‘v’ in 
meters

Plot ‘uwave’ Vs. 
‘vwave’ 

for units of 
wavelength



Initial Flagging
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Initial Flagging includes data we know to be problematic even 
without visual inspection:
• Shadowing

– Issue at low elevations
– Issue for compact arrays
– In CASA:  flagdata(vis=‘my_data.ms’, mode=‘shadow’)

• Observing Log
– Many observatories will note weather or hardware problems 

that affect the data.  
• Other obvious errors

Be sure you have run all of the commands in 
Getting Oriented and Initial Flagging



An Example of Initial Flagging:
Edge Channels
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Data that should be flagged

Amplitude vs. Channel
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Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Bandpass, Phase and Amplitude Calibration

ALMA Data Reduction Tutorial

Synthesis Imaging Summer School



Derive Calibration Tables
• setjy:  set “model” (correct) visibilities using known model for a calibrator
• bandpass:  calculate bandpass calibration table (amp/phase vs frequency)
• gaincal:  calculate temporal gain calibration table (amp/phase vs time)
• fluxscale:  apply absolute flux scaling to calibration table from known source

Manipulate Your Measurement Set
• flagdata/flagcmd/flagmanager:  flag (remove) bad data
• applycal:  apply calibration table(s) from previous steps
• split:  split off calibrated data from your ms

Inspect Your Data and Results
• plotms: inspect your data and calibration tables interactively

Key Tasks for Calibration
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What is Bandpass Calibration?

As we have seen all week, the goal of calibration is to find the relationship 
between the observed visibilities, Vobs, and the true visibilities, V :

Vi j(t,n)obs = Vi j(t,n)Gi j(t)Bi j(t,n)

where t is time, n is frequency,  i and j refer to a pair of antennas (i,j) 
(i.e., one baseline), G is the complex "continuum" gain, and B is the 
complex frequency-dependent gain (the "bandpass").

Bandpass calibration is the process of measuring and correcting the 
frequency-dependent part of the gains, Bi j(t,n).

Bi j may be constant over the length of an observation, or it may have a 
slow time dependence.



Why is BP Calibration important?
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Good bandpass calibration is a key to detection and accurate measurement 
of spectral features, especially weak, broad features.  

Bandpass calibration can also be the limiting factor in dynamic range of 
continuum observations.

• Bandpass amplitude errors may mimic changes in line structure with n

• n-dependent phase errors may lead to spurious positional offsets of 
spectral features as a function of frequency, mimicking doppler motions

• n-dependent amplitude errors limit ability to detect/measure weak line 
emission superposed on a continuum source.  Consider trying to 
measure a weak line on a strong continuum with ~ 10% gain variation 
across the band.



Bandpass Calibration

• Determine the variations of phase and amplitude with frequency

• Account for slow time-dependency of the bandpass response

• We will arrive at antenna-based solutions against a reference antenna

– In principle, could use autocorrelation data to measure antenna-based 
amplitude variations, but not phase

– Most bandpass corruption is antenna-based, yet we are measuring        
N(N-1)/2 baseline-based solutions

– Amounts to channel-by-channel self-cal

64



Bandpass Calibration:
What makes good calibrators?

• Best targets are bright, flat-spectrum sources with featureless spectra

– Although point-source not absolutely required, beware frequency 
dependence of resolved sources

– If necessary, can specify a spectral index using setjy

• Don’t necessarily need to be near science target on the sky
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CASA Tasks for Bandpass Calibration

• We will use gaincal to measure time variation of phase

• Then use bandpass task
– We will calibrate channel-to-channel variation (preferred method)

– Alternatively, could fit a smooth function

– Pay close attention to solutions; e.g. bright calibrators are rare, esp. at 
Band 9

• Use applycal to apply the bandpass solution to other sources
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Create a phase solution for the bandpass calibrator

Run a listobs and note which source is the bandpass calibrator. 
This is J0825+0309 (identified as field 0).
listobs(”SDP81_B4_uncalibrated.ms.split")

Gaincal is the general purpose task to solve for time-dependent 
amplitude and phase variations for each antenna.  Here we carry 
out a short-timescale phase solution ("int") on the bandpass
calibrator.   This is saved as a calibration table "phase_int_bpass.cal".
os.system("rm -rf phase_int_bpass.cal")
gaincal(vis=“SDP81_B4_uncalibrated.ms.split",

caltable="phase_int_bpass.cal",
field="0",
spw=“0:22~42,1:22~42,2:22~42,3:800~1200”,
scan=“3”,solint="int",refant=”DA56”, calmode="p”)



Plot phase solutions (phase vs. time)
Plot the calibration table, showing phase vs. time with a separate 
plot for each antenna. The two colors are the two correlations 
(i.e., polarizations).
plotms(vis="phase_int_bpass.cal", 
xaxis="time",yaxis="phase", gridrows=3, gridcols=3, 
iteraxis="antenna", spw="0", coloraxis='corr', 
plotrange=[0,0,-180,180])



Create the bandpass solution
Now carry out a bandpass solution. This will solve for the 
amplitude and phase corrections needed for each channel for 
antenna. We use gaintable to feed the short-timescale phase 
solution to the task. This means that this table will be applied 
before the bandpass solution is carried out. We will deal with the 
overall normalization of the data later, for now we tell the task to 
solve for normalized (average=1) solutions via solnorm=True.
os.system("rm -rf bandpass.cal")
bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",
field="0",
solint="inf”,
scan=“3”,combine=“scan”,refant=”DA56",
solnorm=True,bandtype=“B”,
gaintable="phase_int_bpass.cal”)



Plot the result with plotbandpass
We inspect the phase and amplitude behavior of the calibration 
plotting the corrections for each antenna using plotbandpass. 
We tell it to plot both phase and amplitude for four spectral 
windows at a time. Cycle through the plots.
plotbandpass(caltable="bandpass.cal", 

xaxis="chan", yaxis="both", subplot=42)



Create a smoother bandpass for spw 3
Notice how noisy the solutions are on one of the spectral 
windows (spw 3). We can also calibrate the bandpass by 
averaging several channels at once, which is good if you think 
that signal-to-noise may be an issue and the solutions can be 
described as smoothly varying functions. We do this for the noisy 
spectral window by setting a solution interval of 5 channels.
For spws 0,1,2:                           For spw 3:
os.system("rm -rf bandpass_smooth.cal")

bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",

field="0",

spw=“0,1,2”,

scan=“3”,

solint="inf”,

combine=“scan”,

refant=”DA56",

solnorm=True,

bandtype=“B”,

gaintable="phase_int_bpass.cal”)

os.system("rm -rf bandpass_smooth.cal")

bandpass(vis=“SDP81_B4_uncalibrated.ms",

caltable="bandpass.cal",

field="0",

spw=“3”,

scan=“3”,

solint="inf,5ch”,

combine=“scan”,

refant=”DA56",

solnorm=True,

bandtype=“B”,

append=True,

gaintable="phase_int_bpass.cal”)



Plot the new (smoother) bandpass solutions
Now plot the new (smoother) bandpass solutions. There are less 
points and they are less noisy in absolute scale. We will use 
these in our calibration.
plotbandpass(caltable="bandpass_smooth.cal",

xaxis="chan", yaxis="both", subplot=42)



Apply the bandpass solutions
Apply the solutions - both in time and frequency - to the data using 
applycal. This creates a new corrected data column. 
applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=“",
gaintable=["bandpass_smooth.cal","phase_int_bpass.cal"],

interp=["linear","linear"],
gainfield=["0","0"],

applymode=‘calonly’)

Plot the results of the calibration by comparing the dependence of 
phase and amplitude on channel before and after calibration.
At this point, we are going to look at how the solutions have fixed the 
phase and amplitude variations vs. frequency.  You can try the non-
channel averaged data to see if there are any differences.



Phase vs Channel before
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan", 

yaxis="phase",  ydatacolumn="data", field="0", 
averagedata=True, avgtime="1e3", coloraxis="corr")



Phase vs Channel after
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan", 

yaxis="phase",  ydatacolumn="corrected", field="0", 
averagedata=True, avgtime="1e3", coloraxis="corr")



Amp vs. Chan before
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="chan", 
yaxis="amp", ydatacolumn="data",field="0", 
averagedata=True, avgtime="1e3",coloraxis="corr")



Amp vs. Chan after
plotms(vis=“SDP81_B4_uncalibrated.ms.split", xaxis="chan", 
yaxis="amp", ydatacolumn="corrected",field="0", 
averagedata=True, avgtime="1e3",coloraxis="corr")



Be sure you have run all of the commands in 
Bandpass Calibration

Our first attempt at bandpass calibration 
is now complete.



Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds 
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna 

Correction TablesDO
NE

DO
NE

DO
NE

DO
NE



Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of 

each telescope as a function of time.
(Solutions derived to give best match of data 

to model once they are applied.)

Measurement Set

Data column holds 
observations.



Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of 

each telescope as a function of time.
(Solutions derived to give best match of data 

to model once they are applied.)

Measurement Set

Data column holds 
observations.

(Optional)
One or More Calibration Tables

(applied on the fly before solution)

(Optional)
Associate a model (expected 
sky distribution) with the MS.

(Else assume point source)



Calibration Table
Later applied with applycal

gaincal

gaincal
Solve for phase and amplitude response of 

each telescope as a function of time.
(Solutions derived to give best match of data 

to model once they are applied.)

Measurement Set

Data column holds 
observations.

(Optional)
One or More Calibration Tables

(applied on the fly before solution)

(Optional)
Associate a model (expected 
sky distribution) with the MS.

(Else assume point source)

oWhat time interval to solve over?
o Requirements for a good solution.

o Reference Antenna



Set Model for the Quasar
First things first - we need to make sure that we have valid 
models in place for our data. Our flux reference source is a 
quasar J0854+2006 (field 1). We will first query the calibrator 
catalog and then use those outputs in the task "setjy” to apply 
the model to our data. In other words, we use a routine to parse the 
ALMA calibrator database, interpolate the expected flux for the 
calibrator reference,  and put in the 'model' column of the data using 
setjy. 
aU.getALMAFluxForMS(“SDP81_B4_uncalibrated.ms.split”)

setjy(vis=”SDP81_B4_uncalibrated.ms.split”,
standard=“manual”,

field=1,
fluxdensity = [3.986837, 0, 0, 0],

spix = -0.456158813,

reffreq = “149.593012274GHz’)



Gain Calibration: Long-term phase solutions
First, we calibrate the phase for each antenna for each scan. 
This is the right cadence to transfer to the science target, which 
is visited only on a ~ every-other-scan timescale.

os.system("rm -rf phase_inf.cal")

gaincal(vis=”SDP81_B4_uncalibrated.ms.split",
caltable="phase_inf.cal",

field=”0~2",
solint="inf",

refant=”DA56”,

gaintype=“G”,
gaintable=“bandpass_smooth.cal”)



Plot the resulting phase calibration
plotms(vis="phase_inf.cal",xaxis="time",yaxis="phase", 

gridrows=3, gridcols=3, iteraxis="antenna", spw='0', 
coloraxis='corr', plotrange=[0,0,-180,180], 
symbolsize=10, plotfile="ss20_phase_scan.png")



Gain Calibration: Short-term Phase Solutions
Now we want to remove any short timescale phase variation 
from the sources involved in the bandpass and flux calibration. 
We do so using gaincal.

os.system("rm -rf phase_int.cal")
gaincal(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="phase_int.cal",

field=”0~2",
solint="int",

refant=”DA56”,
gaintype=“G”,

calmode="p", 

gaintable=“bandpass_smooth.cal")



Plot the resulting short timescale phase 
calibration
plotms(vis="phase_int.cal",xaxis="time",yaxis="phase",gridro

ws=3, gridcols=3, iteraxis="antenna", spw="0", 
coloraxis='corr', plotrange=[0,0,-180,180], 
symbolsize=10, plotfile="ss20_phase_int.png")



Gain Calibration: Long-Term Amplitude Solutions
Now let's derive an amplitude solution, first applying the short-
timescale phase solution.
os.system("rm -rf ampli_inf.cal")
gaincal(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="ampli_inf.cal",

field=”0~2",
solint="inf",

refant=”DA56”,
gaintype=“T”,

calmode="a",

gaintable=[”bandpass_smooth.cal”,”phase_int.cal”])



Plot the solution as amplitude vs. time 
for each antenna and spectral window
• plotms(vis="ampli_inf.cal",xaxis="time",yaxis="amp",grid

rows=3,gridcols=3,iteraxis="antenna",spw='0', 
coloraxis='corr', plotrange=[0,0, 
0.125,0.15],symbolsize=10, 
field='2',plotfile="ss20_ampli_scan.png")



Be sure you have run all of the commands in 
Gain Calibration

Our first attempt at gain calibration is 
now complete.



Set flux scale of calibrators
The gaincal solved for the amplitude scaling to make the data 
match the current model. For the quasar J0854+2006, we have 
taken care to set the correct model using setjy. For the other two 
calibrators, however, we don't a priori know the flux. Those have 
been calibrated using the default model, which is a point source of 
amplitude 1 Jy at the middle of the field. We now use fluxscale to 
bootstrap from the (correct) flux of the quasar through the 
amplitude calibration table to estimates of the true flux of the other 
two calibrators. This will output both a new table and the flux 
estimates themselves.
os.system("rm -rf flux_inf.cal”)
fluxscaleDict = fluxscale(vis=”SDP81_B4_uncalibrated.ms.split",

caltable="ampli_inf.cal",

fluxtable="flux_inf.cal",
reference=“1")



Plot the rescaled flux solutions
Plot the rescaled flux table, which now should contain the correct 
flux calibrations.
plotms(vis="flux_inf.cal", xaxis="time",yaxis="amp", 

gridcols=3, gridrows=3, iteraxis="antenna”, 
plotrange=[0,0,0.13,0.18],symbolsize=10,plotfile=“ss20_flux_scan
.png”)



Be sure you have run all of the commands in 
Setting the Flux Scale

We have now bootstrapped the known 
flux of the flux reference quasar to the 
fluxes of our other calibrators. 



Steps to a Calibrated Data set

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna
bandpass

Calibrate the Amplitude and Phase vs. Time of Each Antenna
gaincal

Set the Absolute Amplitude Scale With Reference to a Known Source
fluxscale

Apply all corrections to produce calibrated data
applycal

Bandpass Calibration Table

Phase Calibration Table
Amplitude Calibration Table

Flux Calibration Table

Measurement Set

Corrected column now holds 
calibrated data.

Correct for System Temperature, WVR (Water Vapor), Antenna Positions
gencal, wvrgcal Tsys, WVR, Antenna 

Correction TablesDO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE

DO
NE



Apply Bandpass, Phase, & Flux Calibration Tables

For our bandpass and flux calibrators (fields 0 & 1), we apply our 
bandpass calibration and our gain calibration 
(short term phase + flux).
For our science target and phase calibrator (fields 2 & 3), we apply 
our bandpass calibration and our gain calibration 
(long term phase + flux).
For field 0:
applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”0", 

gaintable=[”bandpass_smooth.cal”,”phase_int.cal","flux_inf.cal"],

gainfield=[“”,”0”,”0”],

interp="linear,linear",

calwt=True,

flagbackup=False)



Apply Bandpass, Phase, & Flux Calibration Tables

For field 1:

For fields 2 & 3:

applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”1", 

gaintable=[”bandpass_smooth.cal”,”phase_int.cal", "flux_inf.cal"],

gainfield=[“”,”1”,”1”], interp="linear,linear",

calwt=True, flagbackup=False)

applycal(vis=”SDP81_B4_uncalibrated.ms.split",

field=”2,3", 

gaintable=[”bandpass_smooth.cal”,”phase_inf.cal", "flux_inf.cal"],

gainfield=[“”,”2”,”2”],

interp="linear,linear",

calwt=True, flagbackup=False)

Be sure you have run all of the commands in 
Applying Calibrations



Renormalization 

• A visibility amplitude calibration error that affects fields containing strong line emission
• Corrected in affected datasets that have >10% flux offset since Cycle 7. 
• Knowledgebase Article: 

– https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-
issues-caused-by-alma-s-normalization-strategy

• New pipeline stage for pipeline-calibrated datasets
• Manually calibrated datasets are checked and corrected before delivery– this dataset 

does not require renorm correction, but script provided at the end of the calibration 
script – uses pipeline renorm module

https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-issues-caused-by-alma-s-normalization-strategy
https://help.almascience.org/kb/articles/what-are-the-amplitude-calibration-issues-caused-by-alma-s-normalization-strategy


Normalization and Tsys Calibration

• Traditional scheme
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• ALMA scheme
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norm cal

norm cal

Averaged

Not spectrally averaged



Normalization and Tsys Calibration
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• Both the autocorrelations and the system temperature measurements 
are a total power-like measurement of the sky. 

• If the target source is highly extended and bright, then the source can be 
picked up in these total power measurements which then impacts this 
normalization scheme in any channels where the emission was picked 
up! 



Normalization and Tsys Calibration
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• Both the autocorrelations and the system temperature measurements are a 
total power-like measurement of the sky. 

• Dividing by the autocorrelations will under-scale the cross-correlations in 
any affected channels.

• Multiplying by Tsys measurement will over-scale the cross-correlations in any 
affected channels.

• These effects perfectly cancel each other ONLY if they are of the same 
field.



Renormalization Strategy: 
Apply Renormalization Spectrum



Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging



Atacama Large Millimeter/submillimeter Array
Expanded Very Large Array

Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

Data Inspection, Flagging and 
End to End processing

ALMA Data Reduction Tutorials

Synthesis Imaging Summer School



Initial Inspection Tools
• listobs: list contents of a MS
• plotant: plot antenna positions

Inspect Your Data and Results
• plotms: inspect/flag your data interactively and 

examine a calibration table
• listcal: list calibration table data

Flagging
• flagdata:  flag (remove) bad data
• flagcmd:  batch flagging using lists/tables
• flagmanager:  storage/retrieval of flagging state

Key Tasks for Data Inspection/Editing



Data Inspection and Flagging
• This next step goes through the basics of data inspection and 

flagging.
• Throughout the calibration process you will want to create a 

series of diagnostic plots and use these to identify and 
remove problematic data. This lesson steps through common 
steps in identifying and flagging problematic data.

• In the next lesson, we will see how this interplays with 
calibration in a typical iterative workflow.

• We will now use plotms to make a series of diagnostic plots. 
These plots have been picked because we have a good 
expectation of what the calibrators (fields 0, 1, and 2 here) 
should look like in each space.  Before that however, let’s 
walk through the plotms GUI to familiarize ourselves with the 
interface.



Flagging: Locating Bad Data - plotms
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Draw a box around the 
suspected bad data.



Flagging: Locating Bad Data - plotms

112

Click locate and CASA 
will send information 
about the data to the 
logger.



Flagging: Locating Bad Data - plotms
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Bad data can be 
flagged by pressing 
this button or using the 
flagdata task at the 
CASA prompt.



Flagging: Locating Bad Data - plotms
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Flagger’s remorse can 
be corrected by 
unflagging good data



Flagging:
What to Look For
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• Plots of amplitude and phase vs. time and frequency (gain 
solutions, visibilities)

• Iterate over 
– Antenna
– Spectral window
– Source

• Make plots of calibrators first
– Easier to find problems in observations of bright point source
– Harder to find problems in observations of a faint and 

extended source



Flagging:
Example of an Obvious Issue
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Tsys plots (cal table)
NGC 3256 ALMA CASA Guide

Flag the target data for the affected periods (yellow)



Flagging:
What to Look For
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• Smoothly varying phases and amplitudes can be calibrated
• Discontinuities can not be calibrated
• Features in the calibrators that may not be in the target data can 

cause problems



Flagging:
What to Look For
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From TW Hydra ALMA Guide
Color: Polarization
One spectral window (spw) plotted



Flagging:
What to Look For
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From TW Hydra CASA Guide
Brown and Green show phase 
calibrators

Amplitude vs. Frequency - Birdies



Flagging:
What to Look For
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Amplitude vs. Channel Amplitude vs. Channel

Edge Channels



Flagging:
What to Look For
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ALMA Data Workshop – February 28, 2013

From TW Hydra Band 7 Guide
Spectral line in Titan (Flux Calibrator)



Flagging: What to Look For
Phase vs. Time on Gain Calibrator
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First observation of data

Later observations of data

From Antennae ALMA CASA Guide
Gain calibrator observations on one antenna

Flag target data in the region 
where the solution is 

changing 
rapidly/discontinuously



Sage Advice

123

From Rick Perley:
“When in doubt, throw it out.”



Inspect your Data

In general, we will look through these plots one at a time and 
look for data that appears as outliers. Use the "locate" function, 
manipulate the plotted axes, and change the data selection and 
averaging to try to identify the minimum way to specify the 
problem data (antenna, scan, channel, etc.). Keep in mind that 
issues like bad antennas are usually identified using calibrators 
but are flagged for both calibrators and for the science target. 

We will walk you through a few suggested ways of viewing your 
data for inspection and then give you time to explore on your 
own. Start with plots of amplitude and phase vs. uv distance. For 
point sources we expect flat amplitude and zero phases for 
these plots.



Inspection: Amplitude vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist", 

yaxis="amp", ydatacolumn="corrected", field="0,2,3", 
averagedata=True, avgchannel="1e3", avgtime="1e3", 
iteraxis="field", coloraxis="corr")



Inspection: Amplitude vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist", 

yaxis="amp", ydatacolumn="corrected", field="0,2,3", 
averagedata=True, avgchannel="1e3", avgtime="1e3", 
iteraxis="field", coloraxis="corr")

Inspect this plot for 
each source by 
hitting the right 

green arrow 





Are these outlying 
points part of the 

structure of 
SDP.81? Or do they 
need to be flagged?
Let’s investigate …



Colorize instead by 
spectra window (under 

Display tab at left): 
All outlying points are 
from the same (brown) 

spectral window



To confirm all outlying 
points are from the same 
spw (and to determine 

which spw) we:
1) Box them using the 
button to add a box
2) Click the “locate” 

button to print their info 
to the logger



Inspection: Example output from locate 
tool in plotms



Now colorize instead 
by antenna2 (under 
Display tab at left): 

All outlying points are 
again from the same 

(brown) antenna



Inspection: Determining what data to flag

Given the often weaker flux of a science target, it is often difficult 
to discern features that could be representative of real source 
structure from problematic data that needs flagging. 

In the case of the outlying points in the plots we have inspected 
for SDP.81, they are all from the same antenna and the same 
spectral window. This is highly unlikely to be source structure 
and so can should flagged.



Inspection: Phase vs. UVdistance
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis="uvdist", yaxis=“phase", 

ydatacolumn="corrected",   field="0,2,3”, avgdata=True, 
avgchannel="1e3", avgtime="1e3", iteraxis="field", coloraxis="corr")

Click the green arrow to 
make this plot for each 

source







Inspection: Scan-to-Scan Variations in Amplitude
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”time", 

yaxis=“amp", ydatacolumn="corrected",   field="0,2,3”, 
avgdata=True, avgchannel="1e3", avgtime="1e3", coloraxis=”field")

Data looks well-behaved except 
possibly for the outlying points sitting 
at slightly higher amplitudes for our 

source. 



Now colorize by antenna.  Again the box and 
locate tools help us see that all outlying points 

appear to be from the same (blue) antenna so we 
will flag it. 



Inspection: Scan-to-Scan Variations in Phase
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”time", 

yaxis=“phase", ydatacolumn="corrected", field="0,2,3”, 
avgdata=True, avgchannel="1e3", avgtime="1e3", coloraxis=”field")

We are looking for scans 
with significantly more 
dispersion than others (i.e. 
times when the weather was 
worse) but we don’t see any 
issues. 



Lines or Spikes

Finally, we don't expect strong lines in the calibrators and sharp 
unexpected spikes anywhere are likely to be spurious. We will 
likely want to flag any lines or spikes. Plot the amplitude and 
phase as function of channel for the calibrators and the source.

First we will plot our three spectral windows with wide channels 
(128 channels with 15625 kHz each; i.e. those set for continuum 
– see listobs output). 

Then we will plot our final spectra window set with narrower 
channels (3840 channels with 488 kHz each).



Inspection: Spectral Windows with Wide Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel", 

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”, 
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”spw”, 
iteraxis=“field”, spw=“0,1,2”, avgantenna=True)

We inspect the three spws (0,1, & 2) with wide (15625 kHz) channels  to 
look for lines or spikes. We don’t note any issues (i.e. spikes).



Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel", 

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”, 
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”, 
iteraxis=“field”, spw=“3”, avgantenna=True)

We note a spike in our 
bandpass calibrator

We inspect the spw 3 with narrow 
(488 kHz) channels to look for lines 
or spikes. 



Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel", 

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”, 
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”, 
iteraxis=“field”, spw=“3”, avgantenna=True)

We note the same spike 
in our phase calibrator

We inspect the spw 3 with narrow 
(488 kHz) channels to look for lines 
or spikes. 



Inspection: Spectral Windows with Narrow Channels
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel", 

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”, 
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”, 
iteraxis=“field”, spw=“3”, avgantenna=True)

We inspect the spw 3 with narrow 
(488 kHz) channels to look for lines 
or spikes. We note the same spike 

in our source.



Flag the spike we see in all of our targets.
plotms(vis=”SDP81_B4_uncalibrated.ms.split", xaxis=”channel", 

yaxis=“amp", ydatacolumn="corrected", field="0,1,2,3”, 
avgdata=True, avgchannel=“ ", avgtime="1e6", coloraxis=”corr”, 
iteraxis=“field”, spw=“3”, avgbaseline=True)

Averaging over short baselines makes this feature easier to discern



Note: We already know where this feature 
comes from!

Looking back at our Tsys
plots (made when applying 
initial corrections to the 
data), we see a dip in the 
atmospheric transmission 
which highlights an 
absorption feature in the 
atmosphere at that 
frequency. This coincides 
with a peak in Tsys and 
with the spike in our data.



Define your Data Flags
Now take some time to inspect the data yourself and look for any 
additional issues that may need flagging. We have noted some 
recommendations at the end of the calibration.py script. 

Once you have identified the data you want to flag, enter those 
flagging commands at the earlier (marked) point in the calibration.py
script before Bandpass Calibration but after Getting Oriented and 
Initial Flagging. 

An example: (flagging problematic antenna in spw 2)
flagdata(vis=“SDP81_B4_uncalibrated.ms.split”,

mode=“manual”,

spw=“2”,

antenna=“PM04”

flagbackup=False)



Redo calibration after flagging

• If you have flagged calibrator data, you must re-run through the 
entirety of the calibration after flagging. By flagging problematic 
data, we improve all of our solutions for our bandpass, gain, etc.

• Place any data flag commands in the flagging section in the 
calibration.py script before the bandpass calibration is run

• Then execute the script in its entirety (aka “end-to-end”). 
– either by entering each command at the casa prompt as we 

have been doing or by executing the script as a whole via:

• In the interest of time, we won’t re-run the script today, and 
instead will move on to the imaging section

execfile("calibration.py”)



A look at the final calibrated data



Final Steps
Several iterations of inspection, defining flags, and re-calibration 
can be performed. Typically after one is satisfied by the 
calibrated data quality, it is recommended to split out the 
corrected column of the data to a new measurement set. We will 
not do it in this tutorial in the interest of saving space. For 
future reference, this is how splitting out the correct column can 
be done:

To free space on your machine, please remove 
SDP81_B4_uncalibrated.ms.split from your Calibration directory 
when you are done with the calibration.

split(vis=“SDP81_B4_uncalibrated.ms.split”,

outputvis=“SDP81_B4_calibrated.ms.split”,

datacolumn=“corrected”,

keepflags=True)

os.system(“rm –fr SDP81_B4_uncalibrated.ms.split”)



Outline

• Short introduction to CASA and the Python interface
– How to use tasks

– What is a measurement set?

• The Flow of Calibration

• Overview of your Directory
– Data preparation and set up

– Getting oriented with your data

• Data Calibration
• Data Inspection and Flagging

• Basic Imaging
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Basic Imaging

ALMA Data Reduction Tutorials

Synthesis Imaging Summer School

Introduction to deconvolution in CASA (clean)
Introduction to various imaging methods available in CASA



How to analyze (imperfect) interferometer data?

• image plane analysis
– dirty image TD(x,y) = Fourier transform { V(u,v) } 
– deconvolve b(x,y) from TD(x,y) to determine (model of) T(x,y)

visibilities        dirty image          sky brightness

deco
nvo

lve

Fourier tr
ansfo

rm
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Basic CLEAN Algorithm
① Initialize a residual map to the dirty map

1. Start loop
2. Identify strongest feature in residual

map as a point source
3. Add this point source to the clean 

component list
4. Convolve the point source with b(x,y) 

and subtract a fraction g (the loop 
gain) of that from residual map

5. If stopping criteria not reached, do 
next iteration

② Convolve Clean component (cc) list by an 
estimate of the main lobe of the dirty beam 
(the “Clean beam”) and add residual map 
to make the final “restored” image

b(x,y)

TD(x,y)
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Basic CLEAN Algorithm (cont)

• stopping criteria
– residual map max < multiple of rms (when noise limited)
– residual map max < fraction of dirty map max (dynamic range limited)
– max number of clean components reached (no justification)

• loop gain 
– good results for g ~ 0.1 to 0.3
– lower values can work better for smoother emission, g ~ 0.05

• easy to include a priori information about where to 
search for clean components (“clean boxes”)



A few notes on clean boxes
• Because we do not fully sample the uv-plane in our imaging, there is 

generally no unique solution to the deconvolution process
• We use clean ‘boxes’, or masks, to identify regions of the image or 

cube with real emission
• Clean boxes are a way to create the best possible model for your 

source – particularly sources with complex emission
• As a first step, include bright features in your mask, drawing a close 

contour around the emission
• For cubes, you can mask channel-by-channel, or all channels
• As tclean progresses, strong residuals that do not appear to be due 

to sidelobes (i.e., do not disappear in subsequent cycles) can be 
added iteratively

• Be careful when masking – adding a mask around noise or beam 
sidelobes can create features in your final image that are not real
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Automasking (auto-multithresh) in tclean
• Algorithm developed by A. Kepley,

T. Tsutsumi (+Yoon, Indebetouw,  Brogan)

– parameterized in terms of fundamental 
image parameters (S/N, fraction of 
beam, sidelobe level) ⇒ instrument 
independent

– Masks are re-calculated every major 
cycle within tclean ⇒ follows evolution 
of image

• Available in tclean since CASA 5.1
– usemask=‘auto-multithresh’

• Deployed in ALMA Cycle 5 pipeline
• CASA guide: 

https://casaguides.nrao.edu/index.php?title=
Automasking_Guide

https://casaguides.nrao.edu/index.php?title=Automasking_Guide
https://casaguides.nrao.edu/index.php?title=Automasking_Guide


Dirty Beam Shape and Weighting
Each visibility point is given a weight in the imaging step

• Natural
– Weights inversely proportional to noise variance
– Best point-source sensitivity; poor beam characteristics

• Uniform
– Weights inversely proportional to noise variance and sampling 

density (longer baseline are given higher weight than in natural)
– Best resolution; poorer noise characteristics

• Briggs (Robust)
– A graduated scheme using the parameter robust
– In CASA, set robust from -2 ( ~ uniform) to +2 ( ~ natural)
– robust = 0 often a good choice



Imaging Results
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Natural Weight Beam CLEAN image



Imaging Results
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Uniform Weight Beam CLEAN image



Imaging Results
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Robust=0 Beam CLEAN image



tclean in CASA:
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Basic Image Parameters:   Pixel Size and Image Size

• pixel size
– should satisfy       Dx < 1/(2 umax )     Dy < 1/(2 vmax)
– in practice, 3 to 5 pixels across the main lobe of the dirty beam

• image size
– Consider FWHM of primary beam (e.g. ~ 20” at Band 7)
– Be aware that sensitivity is not uniform across the primary beam
– Use mosaicing to image larger targets
– Not restricted to powers of 2

*  if there are bright sources in the sidelobes, they will be aliased into the 
image (need to make a larger image)



Largest Angular Scale
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Band Frequency 
(GHz)

Primary 
beam (“)

Range of Scales (“) 
C32-1                   C32-9

3 84-116 72 - 52 4.2 - 24.6 0.7 - 15.1
6 211-275 29 - 22 1.8 - 10.7 0.3 - 6.6
7 275-373 22 - 16 1.2 - 7.1 0.2 - 4.4
9 602-720 10 – 8.5 0.6 - 3.6 0.1 - 2.2

• Range from synthesized beam to maximum angular scale (MAS)
• Smooth structures larger than LAS begin to be resolved out.
• All flux on scales larger than l/Bmin (~2 x MAS) completely resolved out.



Since 12 executions of the SDP.81 observations were made, ordinarily 
the next steps would be to repeat the calibration steps we just 
performed for one execution for the remaining eleven. In the interest of 
time, we have already done this and combined the 12 executions for you. 
In your Imaging directory you should have:

SDP.81_Band4.ms

We will now work through the steps noted in the imaging script 
provided (imaging.py).

Orient yourself with the calibrated measurement set:

Basic Imaging
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listobs(“SDP.81_Band4.ms”)
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Check your Fourier Plane Coverage
plotms(vis=’SDP.81_Band4.ms', xaxis='u', yaxis='v',

avgchannel='10000', avgspw=False, avgtime='1e9', avgscan=False,
coloraxis=“observation")

Note: Each of the 
12 observations 

(colors) fills out a 
different portion 
of the uv plane.



Check your Fourier Plane Coverage

Colorize by 
baseline using the 

options under 
the Display tab.



Check your Fourier Plane Coverage

This zoom on the previous 
plot shows the uv tracks 

traced out by the 
observations. Being able to 
observe for a full 24 hours 
would complete the circle.
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Imaging the Bandpass Calibrator



Just for illustrative purposes, let’s start by imaging a bright, point-like 
source like our bandpass calibrator.

Image the Bandpass Calibrator: Natural

os.system(“rm –rf bandpass_natural.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_natural”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’,gridder=‘standard’,

imsize=[512,512], cell=[“0.005arcsec”],

weighting=“natural”, threshold=“0mJy”,

niter=10000, interactive=True)

Running tclean will bring up the following interactive window …  



Image the Bandpass Calibrator: Natural

This is the dirty image 
of our calibrator. 



Image the Bandpass Calibrator: Natural

Define a mask around 
the emission (similar to 
the one shown here) 
using the region buttons 
above.



Image the Bandpass Calibrator: Natural

This is a plot of 
the residuals.



Image the Bandpass Calibrator: Natural
imview(“bandpass_natural.image”)View the resulting clean image:

Different weighting 
schemes result in 
different synthesized 
beam size and often 
sensitivity. Note how the 
resulting image changes 
with the use of different 
weighting schemes 
(uniform, natural or 
briggs), and for Briggs 
weighting, the use of 
different robust 
parameters.



os.system(“rm –rf bandpass_robust.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_robust”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’, gridder=‘standard’,

imsize=[512,512], cell=[“0.005arcsec”],

weighting=“briggs”, robust=0.0,

threshold=“0mJy”,

niter=10000, interactive=True)

Now image the bandpass calibrator using a Briggs weighting scheme:

Image the Bandpass Calibrator: Briggs

Running tclean will bring up the following interactive window …  



Image the Bandpass Calibrator: Briggs

This is the dirty image 
of our calibrator. 



Image the Bandpass Calibrator: Briggs

Define a mask around 
the emission (similar to 
the one shown here) 
using the region buttons 
above.



Image the Bandpass Calibrator: Briggs

This is a plot of the 
residuals.



Image the Bandpass Calibrator: Briggs
View the resulting clean image: imview(“bandpass_robust.image”)



What happens when we image the bandpass calibrator using a larger 
pixel size?
os.system(“rm –rf bandpass_bigpix.*”)

tclean(vis=“bandpass.ms”,

imagename=“bandpass_bigpix”,

field=“0”, spw=“”,

specmode=“mfs”, deconvolver=‘hogbom’, gridder=‘standard’,

imsize=[128,128], cell=[“0.05arcsec”],

weighting=“briggs”, robust=-1,

threshold=“0mJy”,

niter=10000, interactive=True)

Image the Bandpass Calibrator: Large Pixels

Running tclean will bring up the following interactive window …  



Image the Bandpass Calibrator: Large Pixels

This is the dirty image 
of our calibrator. 



Image the Bandpass Calibrator: Large Pixels



Image the Bandpass Calibrator: Large Pixels

This is a plot of the 
residuals.



Image the Bandpass Calibrator: Large Pixels
View the resulting clean image: imview(“bandpass_bigpix.image”)



Image the Bandpass Calibrator: Comparison
Image of bandpass calibrator cleaned with robust weighting scheme

Small Pixels                                       Large Pixels
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Imaging the SDP.81 Continuum



Image the SDP.81 Continuum

os.system(“rm –rf SDP.81.continuum_multiscale.*”)

tclean(vis=“SDP.81.Band4_continuum.ms”,

imagename=“SDP.81.continuum_multiscale”,

spw=“”, field=“SDP*”,

specmode=“mfs”, gridder=“standard”, deconvolver=“multiscale”,

imsize=1500, cell=“0.01arcsec”,

scales=[0,5,15,45],

interactive=True, mask=“”,

weighting=“briggs”, robust=1.0,

niter=10000, threshold=“0.02mJy”)

We will image the continuum emission in SDP.81 using a multiscale clean. 
For more information on multiscale cleaning, see the 
information/references in your imaging.py script.

Running tclean will bring up the following interactive window …  



Image the SDP.81 Continuum

Define a mask around 
the emission (similar to 
the one shown here) 
using the region buttons 
above.



Image the SDP.81 Continuum
imview(“SDP.81.continuum_multiscale.image”)View the resulting clean image: 

Note how the 
resulting image 
changes with 
different 
selections of the 
robust and 
weighting 
parameters.



Output of tclean
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• SDP.81.continuum_multiscale.pb

• SDP.81.continuum_multiscale.image

• SDP.81.continuum_multiscale.mask

• SDP.81.continuum_multiscale.model

• SDP.81.continuum_multiscale.psf

• SDP.81.continuum_multiscale.residual

Relative sky sensitivity - shows the primary beam response

Cleaned and restored image

Clean “boxes” shows where you cleaned

Clean components - the model used by clean (in Jy/pixel)

Dirty beam - shows the synthesized beam

Residual shows what was left after you cleaned 
(the "dirty" part of the final image)

Minimally:



Since some emission is still resolved out at this angular resolution, we 
can image the target while tapering the uv data at long baselines to 
emphasize and recover more of the extended emission.

Image the SDP.81 Continuum

os.system(“rm –rf SDP.81.continuum_smooth.*”)

tclean(vis=“SDP.81.Band4_continuum.ms”,

imagename=“SDP.81.continuum_smooth”,

spw=“”, field=“SDP*”,

specmode=“mfs”, gridder=“standard”, deconvolver=“multiscale”,

imsize=1500, cell=“0.01arcsec”,

scales=[0,5,15,45],

interactive=True, mask=“”,

weighting=“briggs”, robust=1.0,

uvtaper=[“1000klambda”],

niter=10000, threshold=“0.025mJy”)

Running tclean will bring up the following interactive window …  



Image the SDP.81 Continuum

Define a mask around the 
emission (similar to the 
one shown here) using 
the region buttons above.



Image the SDP.81 Continuum
imview(“SDP.81.continuum_smooth.image”)View the resulting clean image:



View the resulting clean image as a contour plot:

Image the SDP.81 Continuum

imview ({'file':'SDP.81.continuum_smooth.image’,'levels':[0.2,0.4,0.6,  
0.8],'unit':0.0002'})

Adjust contour 
levels using
Data       Adjust 
Data Display
under 
Basic Settings
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Imaging the SDP.81 CO Line



The spectral line we will image is CO(5-4) at z = 3.042 (redshifted to 
142.57 GHz). To do this, we need to subtract the continuum and split off 
the line data. 
Here, this step has been done for you, as it can take a while. 

Image the SDP.81 CO Line

spw_cont = 
'0~2,4~6,8~10,12~14,16~18,20~22,24~26,28~30,32~34,36~38,40~42,44~46’

spw_line = '3,7,11,15,19,23,27,31,35,39,43,47’

os.system('rm –rf SDP.81_Band4_COline.ms')
split(vis='SDP.81_Band4.ms',outputvis='SDP.81_Band4_COline.ms', 
spw=spw_line,datacolumn='data')

Split the spectral line data into a separate measurement set:

The spectral windows containing continuum vs line emission are:

Perform the continuum subtraction:
os.system(“rm –rf SDP.81_Band4_COline.ms.contsub”)
uvcontsub(vis=“SDP.81_Band4_COline.ms”, fitorder=1, 

fitspw=“0~11:5~45:170~187”)



Image the SDP.81 CO Line

Image the CO line emission in SDP.81:

Running tclean will bring up the following interactive window …  

os.system(“rm –rf SDP.81.CO_smooth.*”)
tclean(vis=“SDP.81.Band4_COline.ms.contsub”,

imagename=“SDP.81.CO_smooth”,
mask=“”,
specmode=“cube”, gridder=“standard”,      
deconvolver=“multiscale”,
imsize=672, cell=“0.02arcsec”,
start=“-520km/s”,width=“21km/s”,nchan=45,
outframe=“LSRK”,restfreq=“142.5700GHz”,
scales=[0,5,15,45], 
interactive=True, 
restoringbeam=“common”,
weighting=“briggsbwtaper”, robust=1.0,
uvtaper=[“1000klambda”],
perchanweightdensity=True,
niter=10000, threshold=“0.52mJy”)



Image the SDP.81 CO Line

Moving through 
channels using the 
arrows shows which 
channels have CO line 
emission in them 
(which we will want to 
mask.).

Channel with no 
CO emission



Image the SDP.81 CO Line

Channel with
CO emission



Image the SDP.81 CO Line

Channel with
CO emission



CO emission is 
detected between 
+200 to -400 km/s, so 
we only need to define 
a cleaning box around 
the emission at those 
channels.

Image the SDP.81 CO Line



Image the SDP.81 CO Line
imview(“SDP.81.Band4.CO_smooth.image”)View the resulting clean image:



Find the SDP.81 CO Line integrated intensity
imview(“SDP.81.Band4.CO_smooth.mom0_2sigma.image”)And view:
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And you’re done!

You have calibrated one execution of a Band 4 
observation of the gravitationally lensed galaxy 
SDP.81 and imaged the galaxy’s continuum and CO 
line emission.
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Extra slides
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Expandable Parameters
• Boldface parameters have subparameters that unfold when 

main parameter is set 



Image the SDP.81 CO Line
plotms(“SDP.81_Band4_Coline.ms”,yaxis=“amp”,xaxis=“channel”,

avgtime=“1e8”,coloraxis=“spw”,restfreq=“142.5700GHz”,
freqframe=“LSRK”,transform=True,avgantenna=True,avgscan=True)


